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Abstract 

Unmanned aerial vehicles are gaining in popularity with the development of science and technology, and are 

being used for a wide range of purposes, including surveillance, rescue, delivery of goods, and data collection. In 

particular, the ability to avoid obstacles during navigation without human oversight is one of the essential capabilities 

that a drone must possess. Many works currently have solved this problem by implementing deep reinforcement 

learning (DRL) model. The essential core of a DRL model is reward function. Therefore, this paper proposes a new 

reward function with appropriate action space and employs dueling double deep Q-Networks to train a drone to 

navigate in indoor environment without collision. 

 

1. Introduction 

Unmanned aerial vehicles (UAVs) commonly known as 

drones are aircraft that can fly without any human pilot on 

board and can operate under remote control by a human 

operator, or even fully autonomous with no provision for 

human intervention. They were originally developed for 

military purposes such as gathering and delivering 

information from dirty and dangerous places. However, with 

the rapid emergence of advanced accessories and artificial 

intelligence, UAVs nowadays have shown their great potential 

in dealing with a wide range of missions from aerial 

photography [ 1 ]  to disaster investigation [ 2 ] , from 

surveillance to search and rescue (SAR) [3], from delivery of 

goods to relaying of internet connections [4], [5]. Despite the 

benefits of utilizing drones in real life, their operations are still 

limited because several obstacles will appear on the way of the 

drones to complete their missions. For this reason, an obstacle 

avoidance algorithm should be developed to support the 

drones to perform effectively in hazardous situations such as 

the appearance of trees, obstacles, humans or narrow corridors. 

Therefore, the primary goal of this study is to develop a drone 

obstacle avoidance model using deep reinforcement learning. 

The main contribution in this work is explained as below: 

 Developing a deep reinforcement learning algorithm 

for drone obstacle avoidance; 

 Proposing a reward function and an appropriate action 

space for drone obstacle avoidance; 

 Evaluating the model in some unseen environments. 

 

2. Related work 

There are many works that implement reinforcement  

learning to solve obstacle avoidance task. The study [6] 

presents a novel framework in which the U-Net is trained 

using labels generated by optical flow and critic networks in a 

reward-driven manner. To determine the direction in which the 

drone chose to move, the optical flow technique was employed 

to construct raw optical vectors between two subsequent 

images. The resulting vectors were then sent into the critic 

network in order to create the label map for training the U-Net 

model. Finally, the U-Net model output was sent into the actor 

network to create control commands. Several policy gradient 

algorithms using the continuous action space have been tested 

in this work. As a result, ACKTR has shown the best 

performance among different algorithms. The proposed 

framework also showed great performance in both the trained 

environment and the unseen environments. Although the 

authors successfully tested the proposed model in real life 

environment, the drone is limited to moving in three linear 

axes and cannot change direction, resulting in an unusual 

behavior. 

Another application of DRL algorithm was studied in [7], 

where drone operating in the indoor environments. This paper 

focused on training a drone to autonomously avoid obstacles 

in continuous action space using the soft-actor-critic algorithm 

(SAC). The goal was to train the UAV to select a correct and 

smooth action using only image data. The depth maps were 

used as input and SAC was paired with a variational 

autoencoder (VAE) to train the UAV to accomplish obstacle 

avoidance tasks in a simulation environment with  various 

wall constraints. However, the reward function in this work is 

not general. It only can be used for an environment that has a 

hole on the wall and outputs of the actor network are the 

velocities in y and z direction. 

 

3. Methodology 

The overall concept of the algorithm is showed in this 
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section. The obstacle avoidance (OA) algorithm contains two 

phases. Firstly, the depth image is provided by Airsim 

simulator [8]. Then, stacking a sequence of depth images to 

consider the temporal information during navigation. Finally, 

the consecutive depth images are passed through the D3QN 

model, which output the control command. The available 

action space for drone is split into two categories. The linear 

x-velocity has 2 candidates: [0.8, 0.4] and the angular velocity 

has 5 actions: [±0.5, ±0.25, 0]. The zero angular velocity in 

action space decreases the chance of collision in the complex 

environments. Fig. 1 shows the flow diagram of the obstacle 

avoidance system. 

 

 

Figure 1. Diagram of training and testing for  

obstacle avoidance algorithm 

2.1 Q Learning algorithm 

 

The Deep Q-Network algorithm (DQN) has demonstrated 

exceptional performance in handling complicated problems. 

Deep Q-Learning, crucially, replaces the regular Q-table with 

a neural network. A neural network maps input states to 

(action, Q-value) pairs rather than mapping a state-action pair 

to a q-value. The DQN contains two value function: an online 

network and a target network. For the update process. The 

online network is updated at each iteration, whereas the target 

network is fixed for a set number of iterations before being 

modified. Because the target network is fixed, the online 

network may undergo consistent training. The target network 

function is expressed as below: 
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However, according to reference [9], the original DQN tends 

to overestimate Q values, it might affect negatively to the 

training process. An algorithm called Double DQN was 

introduced to overcome this problem. Double DQN shows a 

great improvement upon DQN, especially, on the Atari 2600 

domain. the expression of double Q-function: 
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There is another enhanced algorithm called Dueling DQN. B

y dividing the network into two different streams, the dueling 

architecture can learn which states are or are not useful, 

without having to know the effect of each action at each time 

step. This algorithm computes a new quantity called the 

advantage A(s,a), which is the subtraction between Q-value 

and state-value: 

 
 A(s,a) = Q(s,a) - V(s)  

 

To take advantage of the Double DQN and Dueling DQN 

methods, a hybrid model known as Double Dueling DQN 

(D3QN) was developed. This algorithm outperformed other 

techniques in the DQN variants, especially in discrete action 

space problems. The target Q-value is shown in equation 

below: 

 
 3
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When compared with other DQN variants. D3QN shows a 

greater performance over 65% problems in the paper [10],    

[ 1 1 ] . Therefore, this paper adopted the D3QN for our 

algorithm. 

 

2.2 Reward Function 

 

Designing a well reward function is a crucial task in 

reinforcement learning algorithm. In navigation, choosing to 

move straight as much as possible is an ideal movement for 

drone to save battery. Therefore, a reward function that help 

the drone avoiding obstacles is developed to resolve this 

problem. 

In this algorithm, the reward function is divided into three 

cases to cover the entire surrounding environment such as 

High-speed reward function, Turning reward function, 

Collision reward function. The minimum distance is 

calculated by finding the minimum distance values from the 

nearest obstacle to the drone. This distance is measured by 

Lidar sensor in Airsim. If the distance from the closest 

obstacle is larger than 1.5m, the obstacle is in the High-speed 

zone and vice versa. The ideal motion of the drone is to move 

straight as much as possible to reduce the consumption of 

battery. Therefore, it is vital to define an efficient reward that 

force the drone moving forward. The proposed reward 

function is defined as below: 

 
 min 1.5

min 1.5
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Figure 2. Illustration of Turning zone  

and High-speed zone 
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Where vx is the linear speed in x direction and θ is the angular 

velocity. When the nearest obstacle is in the High-speed zone, 

the drone should choose to move straight forward with high 

speed and should not choose to turn in order to maximize the 

reward. On the other hand, when the obstacle is in the Turning 

zone, drone should turn to receive better reward and to avoid 

colliding with obstacles. 

 

4. Experiments and results 

4.1 Training settings 

 

 

Figure 3. The designed training environment 

A complex training map containing different kind of objects 

such as cylinders, walls, pillars and people is created. The 

drone in training process is initialized at the center of the map 

with random orientation. A training episode is stopped when 

the drone collides with obstacle or the number of steps is more 

than 500. 

 

4.2 Experimental results 

 

 

 

 

 

 

 

 

 

 

 

 

To test the performance of the OA model, three new 

environments are created as shown in Fig. 4. The drone was 

tested with four different environments. The first environment 

is the environment that was trained and the other three ones 

are unseen environments. Each configuration is tested with 20 

trials. An episode is considered to be successful when the 

drone can navigate more than 500 steps. The experimental 

results are described in Table 1. 

 

 

 

Table 1. Experimental results of 20 trials for each testing 

map 

Environment Map a Map b Map c 

Complete/Total 19/20 17/20 11/20 

Average steps 490 472 370 

 

 As shown in Table 1, the trained drone completed 19 

episodes out of 20 with the simple configuration (map a). The 

successful rate on the second map (map b) is lower than in 

map a, but it is still relatively good, with 17 successful trials. 

Finally, in the most challenging map (map c), the drone only 

completes 11 of 20 trials. However, while the success ratio in 

the last configuration is low, the average number of steps is 

370, indicating that the drone can still avoid most of the 

obstacles on the map. 

5. Conclusion and future work 

In summary, this paper has proposed a new reward function 

with an appropriate action space that help the drone safely 

navigate without collision. The obstacle avoidance 

performance of the model is evaluated by three unseen 

environments and the results show that the drone has a great 

ability to avoid obstacle even in the untrained environments. 

Future work should compare the performance with state-of-

the-arts model and consider the ability to move up and down 

in order to use up all the drone’s degrees of freedom. 
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