• Title/Summary/Keyword: Deep-Q-networks

Search Result 28, Processing Time 0.032 seconds

Applying Deep Reinforcement Learning to Improve Throughput and Reduce Collision Rate in IEEE 802.11 Networks

  • Ke, Chih-Heng;Astuti, Lia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.334-349
    • /
    • 2022
  • The effectiveness of Wi-Fi networks is greatly influenced by the optimization of contention window (CW) parameters. Unfortunately, the conventional approach employed by IEEE 802.11 wireless networks is not scalable enough to sustain consistent performance for the increasing number of stations. Yet, it is still the default when accessing channels for single-users of 802.11 transmissions. Recently, there has been a spike in attempts to enhance network performance using a machine learning (ML) technique known as reinforcement learning (RL). Its advantage is interacting with the surrounding environment and making decisions based on its own experience. Deep RL (DRL) uses deep neural networks (DNN) to deal with more complex environments (such as continuous state spaces or actions spaces) and to get optimum rewards. As a result, we present a new approach of CW control mechanism, which is termed as contention window threshold (CWThreshold). It uses the DRL principle to define the threshold value and learn optimal settings under various network scenarios. We demonstrate our proposed method, known as a smart exponential-threshold-linear backoff algorithm with a deep Q-learning network (SETL-DQN). The simulation results show that our proposed SETL-DQN algorithm can effectively improve the throughput and reduce the collision rates.

A study on Deep Q-Networks based Auto-scaling in NFV Environment (NFV 환경에서의 Deep Q-Networks 기반 오토 스케일링 기술 연구)

  • Lee, Do-Young;Yoo, Jae-Hyoung;Hong, James Won-Ki
    • KNOM Review
    • /
    • v.23 no.2
    • /
    • pp.1-10
    • /
    • 2020
  • Network Function Virtualization (NFV) is a key technology of 5G networks that has the advantage of enabling building and operating networks flexibly. However, NFV can complicate network management because it creates numerous virtual resources that should be managed. In NFV environments, service function chaining (SFC) composed of virtual network functions (VNFs) is widely used to apply a series of network functions to traffic. Therefore, it is required to dynamically allocate the right amount of computing resources or instances to SFC for meeting service requirements. In this paper, we propose Deep Q-Networks (DQN)-based auto-scaling to operate the appropriate number of VNF instances in SFC. The proposed approach not only resizes the number of VNF instances in SFC composed of multi-tier architecture but also selects a tier to be scaled in response to dynamic traffic forwarding through SFC.

Visual Analysis of Deep Q-network

  • Seng, Dewen;Zhang, Jiaming;Shi, Xiaoying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.853-873
    • /
    • 2021
  • In recent years, deep reinforcement learning (DRL) models are enjoying great interest as their success in a variety of challenging tasks. Deep Q-Network (DQN) is a widely used deep reinforcement learning model, which trains an intelligent agent that executes optimal actions while interacting with an environment. This model is well known for its ability to surpass skilled human players across many Atari 2600 games. Although DQN has achieved excellent performance in practice, there lacks a clear understanding of why the model works. In this paper, we present a visual analytics system for understanding deep Q-network in a non-blind matter. Based on the stored data generated from the training and testing process, four coordinated views are designed to expose the internal execution mechanism of DQN from different perspectives. We report the system performance and demonstrate its effectiveness through two case studies. By using our system, users can learn the relationship between states and Q-values, the function of convolutional layers, the strategies learned by DQN and the rationality of decisions made by the agent.

DQN Reinforcement Learning for Acrobot in OpenAI Gym Environment (OpenAI Gym 환경의 Acrobot에 대한 DQN 강화학습)

  • Myung-Ju Kang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.35-36
    • /
    • 2023
  • 본 논문에서는 OpenAI Gym 환경에서 제공하는 Acrobot-v1에 대해 DQN(Deep Q-Networks) 강화학습으로 학습시키고, 이 때 적용되는 활성화함수의 성능을 비교분석하였다. DQN 강화학습에 적용한 활성화함수는 ReLU, ReakyReLU, ELU, SELU 그리고 softplus 함수이다. 실험 결과 평균적으로 Leaky_ReLU 활성화함수를 적용했을 때의 보상 값이 높았고, 최대 보상 값은 SELU 활성화 함수를 적용할 때로 나타났다.

  • PDF

Comparison of Activation Functions of Reinforcement Learning in OpenAI Gym Environments (OpenAI Gym 환경에서 강화학습의 활성화함수 비교 분석)

  • Myung-Ju Kang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.25-26
    • /
    • 2023
  • 본 논문에서는 OpenAI Gym 환경에서 제공하는 CartPole-v1에 대해 강화학습을 통해 에이전트를 학습시키고, 학습에 적용되는 활성화함수의 성능을 비교분석하였다. 본 논문에서 적용한 활성화함수는 Sigmoid, ReLU, ReakyReLU 그리고 softplus 함수이며, 각 활성화함수를 DQN(Deep Q-Networks) 강화학습에 적용했을 때 보상 값을 비교하였다. 실험결과 ReLU 활성화함수를 적용하였을 때의 보상이 가장 높은 것을 알 수 있었다.

  • PDF

A Study on Application of Reinforcement Learning Algorithm Using Pixel Data (픽셀 데이터를 이용한 강화 학습 알고리즘 적용에 관한 연구)

  • Moon, Saemaro;Choi, Yonglak
    • Journal of Information Technology Services
    • /
    • v.15 no.4
    • /
    • pp.85-95
    • /
    • 2016
  • Recently, deep learning and machine learning have attracted considerable attention and many supporting frameworks appeared. In artificial intelligence field, a large body of research is underway to apply the relevant knowledge for complex problem-solving, necessitating the application of various learning algorithms and training methods to artificial intelligence systems. In addition, there is a dearth of performance evaluation of decision making agents. The decision making agent that can find optimal solutions by using reinforcement learning methods designed through this research can collect raw pixel data observed from dynamic environments and make decisions by itself based on the data. The decision making agent uses convolutional neural networks to classify situations it confronts, and the data observed from the environment undergoes preprocessing before being used. This research represents how the convolutional neural networks and the decision making agent are configured, analyzes learning performance through a value-based algorithm and a policy-based algorithm : a Deep Q-Networks and a Policy Gradient, sets forth their differences and demonstrates how the convolutional neural networks affect entire learning performance when using pixel data. This research is expected to contribute to the improvement of artificial intelligence systems which can efficiently find optimal solutions by using features extracted from raw pixel data.

A Distributed Scheduling Algorithm based on Deep Reinforcement Learning for Device-to-Device communication networks (단말간 직접 통신 네트워크를 위한 심층 강화학습 기반 분산적 스케쥴링 알고리즘)

  • Jeong, Moo-Woong;Kim, Lyun Woo;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1500-1506
    • /
    • 2020
  • In this paper, we study a scheduling problem based on reinforcement learning for overlay device-to-device (D2D) communication networks. Even though various technologies for D2D communication networks using Q-learning, which is one of reinforcement learning models, have been studied, Q-learning causes a tremendous complexity as the number of states and actions increases. In order to solve this problem, D2D communication technologies based on Deep Q Network (DQN) have been studied. In this paper, we thus design a DQN model by considering the characteristics of wireless communication systems, and propose a distributed scheduling scheme based on the DQN model that can reduce feedback and signaling overhead. The proposed model trains all parameters in a centralized manner, and transfers the final trained parameters to all mobiles. All mobiles individually determine their actions by using the transferred parameters. We analyze the performance of the proposed scheme by computer simulation and compare it with optimal scheme, opportunistic selection scheme and full transmission scheme.

Deep reinforcement learning for optimal life-cycle management of deteriorating regional bridges using double-deep Q-networks

  • Xiaoming, Lei;You, Dong
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.571-582
    • /
    • 2022
  • Optimal life-cycle management is a challenging issue for deteriorating regional bridges. Due to the complexity of regional bridge structural conditions and a large number of inspection and maintenance actions, decision-makers generally choose traditional passive management strategies. They are less efficiency and cost-effectiveness. This paper suggests a deep reinforcement learning framework employing double-deep Q-networks (DDQNs) to improve the life-cycle management of deteriorating regional bridges to tackle these problems. It could produce optimal maintenance plans considering restrictions to maximize maintenance cost-effectiveness to the greatest extent possible. DDQNs method could handle the problem of the overestimation of Q-values in the Nature DQNs. This study also identifies regional bridge deterioration characteristics and the consequence of scheduled maintenance from years of inspection data. To validate the proposed method, a case study containing hundreds of bridges is used to develop optimal life-cycle management strategies. The optimization solutions recommend fewer replacement actions and prefer preventative repair actions when bridges are damaged or are expected to be damaged. By employing the optimal life-cycle regional maintenance strategies, the conditions of bridges can be controlled to a good level. Compared to the nature DQNs, DDQNs offer an optimized scheme containing fewer low-condition bridges and a more costeffective life-cycle management plan.

Path selection algorithm for multi-path system based on deep Q learning (Deep Q 학습 기반의 다중경로 시스템 경로 선택 알고리즘)

  • Chung, Byung Chang;Park, Heasook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.50-55
    • /
    • 2021
  • Multi-path system is a system in which utilizes various networks simultaneously. It is expected that multi-path system can enhance communication speed, reliability, security of network. In this paper, we focus on path selection in multi-path system. To select optimal path, we propose deep reinforcement learning algorithm which is rewarded by the round-trip-time (RTT) of each networks. Unlike multi-armed bandit model, deep Q learning is applied to consider rapidly changing situations. Due to the delay of RTT data, we also suggest compensation algorithm of the delayed reward. Moreover, we implement testbed learning server to evaluate the performance of proposed algorithm. The learning server contains distributed database and tensorflow module to efficiently operate deep learning algorithm. By means of simulation, we showed that the proposed algorithm has better performance than lowest RTT about 20%.

Comparison of value-based Reinforcement Learning Algorithms in Cart-Pole Environment

  • Byeong-Chan Han;Ho-Chan Kim;Min-Jae Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.166-175
    • /
    • 2023
  • Reinforcement learning can be applied to a wide variety of problems. However, the fundamental limitation of reinforcement learning is that it is difficult to derive an answer within a given time because the problems in the real world are too complex. Then, with the development of neural network technology, research on deep reinforcement learning that combines deep learning with reinforcement learning is receiving lots of attention. In this paper, two types of neural networks are combined with reinforcement learning and their characteristics were compared and analyzed with existing value-based reinforcement learning algorithms. Two types of neural networks are FNN and CNN, and existing reinforcement learning algorithms are SARSA and Q-learning.