• 제목/요약/키워드: Deep-Learning

검색결과 5,450건 처리시간 0.036초

Deep Structured Learning: Architectures and Applications

  • Lee, Soowook
    • International Journal of Advanced Culture Technology
    • /
    • 제6권4호
    • /
    • pp.262-265
    • /
    • 2018
  • Deep learning, a sub-field of machine learning changing the prospects of artificial intelligence (AI) because of its recent advancements and application in various field. Deep learning deals with algorithms inspired by the structure and function of the brain called artificial neural networks. This works reviews basic architecture and recent advancement of deep structured learning. It also describes contemporary applications of deep structured learning and its advantages over the treditional learning in artificial interlligence. This study is useful for the general readers and students who are in the early stage of deep learning studies.

Optimization of Cyber-Attack Detection Using the Deep Learning Network

  • Duong, Lai Van
    • International Journal of Computer Science & Network Security
    • /
    • 제21권7호
    • /
    • pp.159-168
    • /
    • 2021
  • Detecting cyber-attacks using machine learning or deep learning is being studied and applied widely in network intrusion detection systems. We noticed that the application of deep learning algorithms yielded many good results. However, because each deep learning model has different architecture and characteristics with certain advantages and disadvantages, so those deep learning models are only suitable for specific datasets or features. In this paper, in order to optimize the process of detecting cyber-attacks, we propose the idea of building a new deep learning network model based on the association and combination of individual deep learning models. In particular, based on the architecture of 2 deep learning models: Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM), we combine them into a combined deep learning network for detecting cyber-attacks based on network traffic. The experimental results in Section IV.D have demonstrated that our proposal using the CNN-LSTM deep learning model for detecting cyber-attacks based on network traffic is completely correct because the results of this model are much better than some individual deep learning models on all measures.

A Review of Deep Learning Research

  • Mu, Ruihui;Zeng, Xiaoqin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.1738-1764
    • /
    • 2019
  • With the advent of big data, deep learning technology has become an important research direction in the field of machine learning, which has been widely applied in the image processing, natural language processing, speech recognition and online advertising and so on. This paper introduces deep learning techniques from various aspects, including common models of deep learning and their optimization methods, commonly used open source frameworks, existing problems and future research directions. Firstly, we introduce the applications of deep learning; Secondly, we introduce several common models of deep learning and optimization methods; Thirdly, we describe several common frameworks and platforms of deep learning; Finally, we introduce the latest acceleration technology of deep learning and highlight the future work of deep learning.

Recent deep learning methods for tabular data

  • Yejin Hwang;Jongwoo Song
    • Communications for Statistical Applications and Methods
    • /
    • 제30권2호
    • /
    • pp.215-226
    • /
    • 2023
  • Deep learning has made great strides in the field of unstructured data such as text, images, and audio. However, in the case of tabular data analysis, machine learning algorithms such as ensemble methods are still better than deep learning. To keep up with the performance of machine learning algorithms with good predictive power, several deep learning methods for tabular data have been proposed recently. In this paper, we review the latest deep learning models for tabular data and compare the performances of these models using several datasets. In addition, we also compare the latest boosting methods to these deep learning methods and suggest the guidelines to the users, who analyze tabular datasets. In regression, machine learning methods are better than deep learning methods. But for the classification problems, deep learning methods perform better than the machine learning methods in some cases.

Deep Learning in Dental Radiographic Imaging

  • Hyuntae Kim
    • 대한소아치과학회지
    • /
    • 제51권1호
    • /
    • pp.1-10
    • /
    • 2024
  • Deep learning algorithms are becoming more prevalent in dental research because they are utilized in everyday activities. However, dental researchers and clinicians find it challenging to interpret deep learning studies. This review aimed to provide an overview of the general concept of deep learning and current deep learning research in dental radiographic image analysis. In addition, the process of implementing deep learning research is described. Deep-learning-based algorithmic models perform well in classification, object detection, and segmentation tasks, making it possible to automatically diagnose oral lesions and anatomical structures. The deep learning model can enhance the decision-making process for researchers and clinicians. This review may be useful to dental researchers who are currently evaluating and assessing deep learning studies in the field of dentistry.

Developing and Evaluating Deep Learning Algorithms for Object Detection: Key Points for Achieving Superior Model Performance

  • Jang-Hoon Oh;Hyug-Gi Kim;Kyung Mi Lee
    • Korean Journal of Radiology
    • /
    • 제24권7호
    • /
    • pp.698-714
    • /
    • 2023
  • In recent years, artificial intelligence, especially object detection-based deep learning in computer vision, has made significant advancements, driven by the development of computing power and the widespread use of graphic processor units. Object detection-based deep learning techniques have been applied in various fields, including the medical imaging domain, where remarkable achievements have been reported in disease detection. However, the application of deep learning does not always guarantee satisfactory performance, and researchers have been employing trial-and-error to identify the factors contributing to performance degradation and enhance their models. Moreover, due to the black-box problem, the intermediate processes of a deep learning network cannot be comprehended by humans; as a result, identifying problems in a deep learning model that exhibits poor performance can be challenging. This article highlights potential issues that may cause performance degradation at each deep learning step in the medical imaging domain and discusses factors that must be considered to improve the performance of deep learning models. Researchers who wish to begin deep learning research can reduce the required amount of trial-and-error by understanding the issues discussed in this study.

Is it possible to forecast KOSPI direction using deep learning methods?

  • Choi, Songa;Song, Jongwoo
    • Communications for Statistical Applications and Methods
    • /
    • 제28권4호
    • /
    • pp.329-338
    • /
    • 2021
  • Deep learning methods have been developed, used in various fields, and they have shown outstanding performances in many cases. Many studies predicted a daily stock return, a classic example of time-series data, using deep learning methods. We also tried to apply deep learning methods to Korea's stock market data. We used Korea's stock market index (KOSPI) and several individual stocks to forecast daily returns and directions. We compared several deep learning models with other machine learning methods, including random forest and XGBoost. In regression, long short term memory (LSTM) and gated recurrent unit (GRU) models are better than other prediction models. For the classification applications, there is no clear winner. However, even the best deep learning models cannot predict significantly better than the simple base model. We believe that it is challenging to predict daily stock return data even if we use the latest deep learning methods.

회귀분석과 딥러닝의 예측 정확성에 대한 비교 그리고 딥러닝 모델 최적화를 위한 기법들의 중요성에 대한 실증적 분석 (Comparison of Prediction Accuracy Between Regression Analysis and Deep Learning, and Empirical Analysis of The Importance of Techniques for Optimizing Deep Learning Models)

  • 조민호
    • 한국전자통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.299-304
    • /
    • 2023
  • 인공지능 기법 중에서 딥러닝은 많은 곳에서 사용되어 효과가 입증된 모델이다. 하지만, 딥러닝 모델이 모든 곳에서 효과적으로 사용되는 것은 아니다. 이번 논문에서는 회귀분석과 딥러닝 모델의 비교를 통하여 딥러닝 모델이 가지는 한계점을 보여주고, 딥러닝 모델의 효과적인 사용을 위한 가이드를 제시하고자 한다. 추가로 딥러닝 모델의 최적화를 위해 사용되는 다양한 기법 중, 많이 사용되는 데이터 정규화와 데이터 셔플링 기법을 실제 데이터를 기반으로 비교 평가하여 딥러닝 모델의 정확성과 가치를 높이기 위한 기준을 제시하고자 한다.

Deep Dependence in Deep Learning models of Streamflow and Climate Indices

  • Lee, Taesam;Ouarda, Taha;Kim, Jongsuk;Seong, Kiyoung
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.97-97
    • /
    • 2021
  • Hydrometeorological variables contain highly complex system for temporal revolution and it is quite challenging to illustrate the system with a temporal linear and nonlinear models. In recent years, deep learning algorithms have been developed and a number of studies has focused to model the complex hydrometeorological system with deep learning models. In the current study, we investigated the temporal structure inside deep learning models for the hydrometeorological variables such as streamflow and climate indices. The results present a quite striking such that each hidden unit of the deep learning model presents different dependence structure and when the number of hidden units meet a proper boundary, it reaches the best model performance. This indicates that the deep dependence structure of deep learning models can be used to model selection or investigating whether the constructed model setup present efficient or not.

  • PDF

Self-Imitation Learning을 이용한 개선된 Deep Q-Network 알고리즘 (Improved Deep Q-Network Algorithm Using Self-Imitation Learning)

  • 선우영민;이원창
    • 전기전자학회논문지
    • /
    • 제25권4호
    • /
    • pp.644-649
    • /
    • 2021
  • Self-Imitation Learning은 간단한 비활성 정책 actor-critic 알고리즘으로써 에이전트가 과거의 좋은 경험을 활용하여 최적의 정책을 찾을 수 있도록 해준다. 그리고 actor-critic 구조를 갖는 강화학습 알고리즘에 결합되어 다양한 환경들에서 알고리즘의 상당한 개선을 보여주었다. 하지만 Self-Imitation Learning이 강화학습에 큰 도움을 준다고 하더라도 그 적용 분야는 actor-critic architecture를 가지는 강화학습 알고리즘으로 제한되어 있다. 본 논문에서 Self-Imitation Learning의 알고리즘을 가치 기반 강화학습 알고리즘인 DQN에 적용하는 방법을 제안하고, Self-Imitation Learning이 적용된 DQN 알고리즘의 학습을 다양한 환경에서 진행한다. 아울러 그 결과를 기존의 결과와 비교함으로써 Self-Imitation Leaning이 DQN에도 적용될 수 있으며 DQN의 성능을 개선할 수 있음을 보인다.