• Title/Summary/Keyword: Deep squat

Search Result 17, Processing Time 0.02 seconds

Comparison of Lower Extremity Muscle Activity during the Deep Squat Exercise Using Various Tools

  • Park, Jun Hyeon;Lee, Jong Kyung;Park, Ji Won
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.2
    • /
    • pp.63-67
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate the effect of assistance tools such as gym balls, wedges, and straps on lower extremity muscle activity and the increase in the range of motion made possible by the use of these tools. The subjects were divided into two groups: a group capable of deep-squatting (PS) and the second finding it impossible or having difficulty in performing such squats (IS). Methods: Twenty-three subjects participated in this study. Surface electromyography was used to measure the muscle activation of the rectus femoris (RF), vastus medialis (VM), and tibialis anterior (TA) muscles during deep squats, normal squats (NS), gym ball squats (GS), wedge squats (WS), and strap squats (SS). A motion analysis system was used to measure the range of motion of the knee joint during each of these exercises. Results: There was a significant difference in the RF muscle activity between the possible squat (PS) and the impossible squat (IS) groups in the GS, and there were significant differences in the RF and TA muscle activity between the groups in the WS. Both the PS group and the IS group showed a significant difference in the TA muscle activity depending on the tool used. There were also significant differences in the range of motion of the knee joints between the intervention methods using NS and those using the tools. Conclusion: In both groups, the muscle activity of the TA muscles was lower when GS, WS, and SS were performed compared to NS. In addition, compared to NS, the range of motion of the knee joint increased when the three tools were used. This study shows that the activity of the RF, VM, and TA muscles decreased and the range of motion of the knee joint increased during deep squats for both the PS and IS groups when tools were used.

Effects of Maximum Repeated Squat Exercise on Number of Repetition, Trunk and Lower Extremity EMG Response according to Water Depth

  • Jang, Tae Su;Lee, Dong Sub;Kim, Ki Hong;Kim, Byung Kwan
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.152-160
    • /
    • 2021
  • The purpose of this study was to investigate the difference in the number of repetitions and the change in electromyographic response during the maximum speed squat exercise according to the depth conditions and the maximum speed squat exercise according to the time of each depth. Ten men in their 20s were selected as subjects and the maximum speed squat was performed for one minute in three environmental conditions (ground, knee depth, waist depth). We found that the number of repetitions according to the depth of water showed a significant difference, and as a result of the post-mortem comparison, the number of repetitions was higher in the ground condition and the knee depth than in the waist depth. And the muscle activity of rectus abdominis, erector spinae, rectus femoris, biceps femoris was increased during ground squat exercise, activity of all muscle was decreased during knee depth squat exercise, and activity of rectus abdominis, erector spinae, biceps femoris, tibialis anterior, gastrocnemius was decreased during waist depth squat. In conclusion, muscle activity of lower extremities during squat exercise in underwater environment can be lowered as the depth of water is deep due to buoyancy, but muscle activity of trunk muscles can be increased rather due to the effect of viscosity and drag.

The Study of Functional Movement in Healthy adults (기능적 움직임 검사의 방법과 적용에 관한 연구)

  • Lee, Jin;Yu, Tae-Ho;Seo, Woo Hyuk
    • Journal of Korean Physical Therapy Science
    • /
    • v.24 no.1
    • /
    • pp.49-58
    • /
    • 2017
  • Purpose: To determine the effect of Functional movement screen(FMS) of Healthy subjects. Method: 18 subjects were randomly assigned toFunctional movement screen test. To measure functional movement screen(deep squat, hurdle step, in line lunge, shoulder mobility reaching, active straight leg raise, trunk stability push up, rotary stability). Result: FMS scores were deep squat 2.61score, right hurdle step 2.67 score, lift hurdle step 2.83 score, in line lunge 2.83 score, right shoulder mobility 2.67 score, left shoulder mobility 2.61 score, right active straight-leg raise 3.00 score, left active straight-leg raise 3.00 score, trunk stability push up 2.33 score, rotary stability 1.94 score. Conclusion: FMS can improve functional movement in healthy adults.

  • PDF

Analysis of Lower Extremity Muscle Activation According to Squat Type during Whole-Body Vibration (전신진동 운동 시 스쿼트 형태에 따른 하지근육의 근활성 효과 분석)

  • Lee, Dae-Yeon
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.371-376
    • /
    • 2018
  • The purpose of this study is to clarify the effects of whole-body vibration and to provide scientific basis for effective exercise by analyzing the differences in lower extremity muscle activation according to squat position during whole body vibration. In this study, muscle activation during whole-body vibration was measured in 10 healthy males in their 20s with no orthopedic conditions during standing posture, deep squat, half squat, and heel raise squat. Muscle activation was compared by measuring the root mean square (RMS) with electromyography electrodes attached to lateral gastrocnemius, tibialis anterior, vastus lateralis, and biceps femoris. The vibration intensity was applied in combinations of the volumes of 50 and 80 and the frequencies of 10, 25, and 40 Hz in each posture. The results showed that there were differences in muscle activations of external gastrocnemius, tibialis anterior, and vastus lateralis among the position(p<.05). The heal raise squat was found to have a high muscle activation effect.

The Relationship between Functional Movement Screen and Ankle Dysfunctions with Chronic Ankle Instability

  • Choi, Ho-Suk;Shin, Won-Seob;Shim, Jae-Kwang;Choi, Sung-Jin;Bang, Dae-Hyouk
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.6
    • /
    • pp.459-463
    • /
    • 2014
  • Purpose: The purpose of this study was to investigate the correlations between functional movement screen (FMS) and ankle dysfunctions in subjects with chronic ankle instability (CAI). Methods: This study was a cross-sectional study of 20 participants with CAI. The ankle dorsiflexion range of motion (ROM), Foot and Ankle Disability Index (FADI), center of pressure (COP) path length, and COP velocity for ankle dysfunction were measured in all the subjects. All the subjects underwent the FMS concerned with ankle functions consisted of deep squats, hurdle steps and in-line lunges. The Spearman rank-order correlation coefficient was used to determine relationship between the ankle ROM, FADI, COP and FMS. Results: The results of the deep squat and in-line lunge exercises revealed a significant correlation with the ankle dorsiflexion ROM, FADI, COP path length, and COP velocity. The hurdle step showed no correlation with the ankle dorsiflexion ROM and FADI but a significant relationship with the COP path length and COP velocity. Conclusion: The results of this study showed that relationship deep squat and in-line lunge and it is suggested that an assessment tool using ankle dorsiflexion ROM and ankle instability would be clinically effective.

The Effects of a Coordinative Locomotor Training Program on the Functional Movement Screen Scores of Badminton Players (CLT 프로그램이 배드민턴 선수의 Functional Movement Screen 점수에 미치는 효과)

  • Kim, Tae-Yoon;Kim, Seok-Hwan
    • PNF and Movement
    • /
    • v.14 no.1
    • /
    • pp.23-32
    • /
    • 2016
  • Purpose: The purpose of this study was to determine the effects of a coordinative locomotor training program on the functional movement screen (FMS) scores of badminton players. Methods: The participants consisted of 31 badminton players who were randomly assigned to either an experimental group (n=15) or a control group (n=16), and engaged in exercise five times per week for six weeks. The experimental group engaged in coordinative locomotor training and the control group engaged in general exercise. An FMS kit (USA) was used to measure the following: FMS score, deep squat, hurdle step, in-line lunge, shoulder mobility, active straight leg raise, trunk stability push up, and rotary stability. Results: The FMS score, deep squat, hurdle step, in-line lunge, active straight leg raise, and trunk stability push up showed significant improvement in the experimental group (p<0.05). Conclusion: The coordinative locomotor training program was able to produce confirmation that functional movement screen scores change in the case of effective exercise interventions in badminton players.

Effects of the Functional Movement Correction Exercise on the Functional Movement Screen Scores of Badminton Players (기능성 움직임 교정운동이 배드민턴 선수의 Functional Movement Screen 점수에 미치는 효과)

  • Kim, Tae-Yoon;Kim, Seok-Hwan
    • PNF and Movement
    • /
    • v.15 no.1
    • /
    • pp.67-75
    • /
    • 2017
  • Purpose: The purpose of this study was to determine the effects of a functional movement correction exercise on the functional movement screen scores of badminton players. Methods: The participants consisted of 25 badminton players who were randomly assigned to an experimental group (n = 13) or a control group (n = 12); they engaged in exercise three times per week for eight weeks. The experimental group engaged in the functional movement correction exercise, while the control group engaged in general exercise. An FMS kit (USA) was used to measure the following: FMS score, deep squat, hurdle step, in-line lunge, shoulder mobility, active straight leg raise, trunk stability push up, and rotary stability. Results: The FMS score, deep squat, hurdle step, in-line lunge, shoulder mobility, active straight leg raise, and trunk stability push up, and rotary stability showed significant improvement in the experimental group (p < 0.05). Conclusion: The experiment confirmed that the functional movement screen scores of badminton players improve with effective exercise interventions.

Performance Comparison for Exercise Motion classification using Deep Learing-based OpenPose (OpenPose기반 딥러닝을 이용한 운동동작분류 성능 비교)

  • Nam Rye Son;Min A Jung
    • Smart Media Journal
    • /
    • v.12 no.7
    • /
    • pp.59-67
    • /
    • 2023
  • Recently, research on behavior analysis tracking human posture and movement has been actively conducted. In particular, OpenPose, an open-source software developed by CMU in 2017, is a representative method for estimating human appearance and behavior. OpenPose can detect and estimate various body parts of a person, such as height, face, and hands in real-time, making it applicable to various fields such as smart healthcare, exercise training, security systems, and medical fields. In this paper, we propose a method for classifying four exercise movements - Squat, Walk, Wave, and Fall-down - which are most commonly performed by users in the gym, using OpenPose-based deep learning models, DNN and CNN. The training data is collected by capturing the user's movements through recorded videos and real-time camera captures. The collected dataset undergoes preprocessing using OpenPose. The preprocessed dataset is then used to train the proposed DNN and CNN models for exercise movement classification. The performance errors of the proposed models are evaluated using MSE, RMSE, and MAE. The performance evaluation results showed that the proposed DNN model outperformed the proposed CNN model.

Analysis of correlation between passive ankle movement range and knee joint kinetic variables during squat movement (스쿼트 동작 시 수동적 발목 가동범위와 무릎 관절 운동역학적 변인 간 상관성 분석)

  • Lee, JaeWoo;Park, JunSung;Lim, Young-Tae;Kwon, Moon-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.509-515
    • /
    • 2020
  • The purpose of this study was to analyze the correlation between passive ankle movement range and knee joint kinetic variables during squat movement. In this study, a total of 27 subjects participated in this study, 19 men and 8 women, who had no history of the musculoskeletal system of the lower extremity. To verify the correlation between the ankle joint flexibility and the knee joint kinetic variables during deep squat, it was performed pearson's correlation coefficient and variables showing statistically significant correlation were performed by simple regression analysis at a significant level of α .05. Through this study, the relationship between the peak joint moment and joint reaction force factors that determine ankle joint flexibility and knee joint pressure was confirmed. Therefore, when applying an exercise that can generate a lot of load on the knee joint such as deep squats during strength training, checking the degree of flexibility of the ankle joint among physical characteristics to the individual may reduce the stability of the body and the risk of injury to the knee joint. It is expected to be helpful in setting the intensity of exercise that can be done.

Diagnosis of Sarcopenia in the Elderly and Development of Deep Learning Algorithm Exploiting Smart Devices (스마트 디바이스를 활용한 노약자 근감소증 진단과 딥러닝 알고리즘)

  • Yun, Younguk;Sohn, Jung-woo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.433-443
    • /
    • 2022
  • Purpose: In this paper, we propose a study of deep learning algorithms that estimate and predict sarcopenia by exploiting the high penetration rate of smart devices. Method: To utilize deep learning techniques, experimental data were collected by using the inertial sensor embedded in the smart device. We implemented a smart device application for data collection. The data are collected by labeling normal and abnormal gait and five states of running, falling and squat posture. Result: The accuracy was analyzed by comparative analysis of LSTM, CNN, and RNN models, and binary classification accuracy of 99.87% and multiple classification accuracy of 92.30% were obtained using the CNN-LSTM fusion algorithm. Conclusion: A study was conducted using a smart sensoring device, focusing on the fact that gait abnormalities occur for people with sarcopenia. It is expected that this study can contribute to strengthening the safety issues caused by sarcopenia.