• 제목/요약/키워드: Deep learning recommendation

검색결과 117건 처리시간 0.021초

Deep Learning-based Evolutionary Recommendation Model for Heterogeneous Big Data Integration

  • Yoo, Hyun;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권9호
    • /
    • pp.3730-3744
    • /
    • 2020
  • This study proposes a deep learning-based evolutionary recommendation model for heterogeneous big data integration, for which collaborative filtering and a neural-network algorithm are employed. The proposed model is used to apply an individual's importance or sensory level to formulate a recommendation using the decision-making feedback. The evolutionary recommendation model is based on the Deep Neural Network (DNN), which is useful for analyzing and evaluating the feedback data among various neural-network algorithms, and the DNN is combined with collaborative filtering. The designed model is used to extract health information from data collected by the Korea National Health and Nutrition Examination Survey, and the collaborative filtering-based recommendation model was compared with the deep learning-based evolutionary recommendation model to evaluate its performance. The RMSE is used to evaluate the performance of the proposed model. According to the comparative analysis, the accuracy of the deep learning-based evolutionary recommendation model is superior to that of the collaborative filtering-based recommendation model.

지능형 헤드헌팅 서비스를 위한 협업 딥 러닝 기반의 중개 채용 서비스 시스템 설계 및 구현 (Design and Implementation of Agent-Recruitment Service System based on Collaborative Deep Learning for the Intelligent Head Hunting Service)

  • 이현호;이원진
    • 한국멀티미디어학회논문지
    • /
    • 제23권2호
    • /
    • pp.343-350
    • /
    • 2020
  • In the era of the Fourth Industrial Revolution in the digital revolution is taking place, various attempts have been made to provide various contents in a digital environment. In this paper, agent-recruitment service system based on collaborative deep learning is proposed for the intelligent head hunting service. The service system is improved from previous research [7] using collaborative deep learning for more reliable recommendation results. The Collaborative deep learning is a hybrid recommendation algorithm using "Recurrent Neural Network(RNN)" specialized for exponential calculation, "collaborative filtering" which is traditional recommendation filtering methods, and "KNN-Clustering" for similar user analysis. The proposed service system can expect more reliable recommendation results than previous research and showed high satisfaction in user survey for verification.

인플루언서를 위한 딥러닝 기반의 제품 추천모델 개발 (Deep Learning-based Product Recommendation Model for Influencer Marketing)

  • 송희석;김재경
    • Journal of Information Technology Applications and Management
    • /
    • 제29권3호
    • /
    • pp.43-55
    • /
    • 2022
  • In this study, with the goal of developing a deep learning-based product recommendation model for effective matching of influencers and products, a deep learning model with a collaborative filtering model combined with generalized matrix decomposition(GMF), a collaborative filtering model based on multi-layer perceptron (MLP), and neural collaborative filtering and generalized matrix Factorization (NeuMF), a hybrid model combining GMP and MLP was developed and tested. In particular, we utilize one-class problem free boosting (OCF-B) method to solve the one-class problem that occurs when training is performed only on positive cases using implicit feedback in the deep learning-based collaborative filtering recommendation model. In relation to model selection based on overall experimental results, the MLP model showed highest performance with weighted average precision, weighted average recall, and f1 score were 0.85 in the model (n=3,000, term=15). This study is meaningful in practice as it attempted to commercialize a deep learning-based recommendation system where influencer's promotion data is being accumulated, pactical personalized recommendation service is not yet commercially applied yet.

Adaptive Recommendation System for Tourism by Personality Type Using Deep Learning

  • Jeong, Chi-Seo;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권1호
    • /
    • pp.55-60
    • /
    • 2020
  • Adaptive recommendation systems have been developed with big data processing as a system that provides services tailored to users based on user information and usage patterns. Deep learning can be used in these adaptive recommendation systems to handle big data, providing more efficient user-friendly recommendation services. In this paper, we propose a system that uses deep learning to categorize and recommend tourism types to suit the user's personality. The system was divided into three layers according to its core role to increase efficiency and facilitate maintenance. Each layer consists of the Service Provisioning Layer that real users encounter, the Recommendation Service Layer, which provides recommended services based on user information entered, and the Adaptive Definition Layer, which learns the types of tourism suitable for personality types. The proposed system is highly scalable because it provides services using deep learning, and the adaptive recommendation system connects the user's personality type and tourism type to deliver the data to the user in a flexible manner.

A Cascade-hybrid Recommendation Algorithm based on Collaborative Deep Learning Technique for Accuracy Improvement and Low Latency

  • Lee, Hyun-ho;Lee, Won-jin;Lee, Jae-dong
    • 한국멀티미디어학회논문지
    • /
    • 제23권1호
    • /
    • pp.31-42
    • /
    • 2020
  • During the 4th Industrial Revolution, service platforms utilizing diverse contents are emerging, and research on recommended systems that can be customized to users to provide quality service is being conducted. hybrid recommendation systems that provide high accuracy recommendations are being researched in various domains, and various filtering techniques, machine learning, and deep learning are being applied to recommended systems. However, in a recommended service environment where data must be analyzed and processed real time, the accuracy of the recommendation is important, but the computational speed is also very important. Due to high level of model complexity, a hybrid recommendation system or a Deep Learning-based recommendation system takes a long time to calculate. In this paper, a Cascade-hybrid recommended algorithm is proposed that can reduce the computational time while maintaining the accuracy of the recommendation. The proposed algorithm was designed to reduce the complexity of the model and minimize the computational speed while processing sequentially, rather than using existing weights or using a hybrid recommendation technique handled in parallel. Therefore, through the algorithms in this paper, contents can be analyzed and recommended effectively and real time through services such as SNS environments or shared economy platforms.

Leveraging Big Data for Spark Deep Learning to Predict Rating

  • Mishra, Monika;Kang, Mingoo;Woo, Jongwook
    • 인터넷정보학회논문지
    • /
    • 제21권6호
    • /
    • pp.33-39
    • /
    • 2020
  • The paper is to build recommendation systems leveraging Deep Learning and Big Data platform, Spark to predict item ratings of the Amazon e-commerce site. Recommendation system in e-commerce has become extremely popular in recent years and it is very important for both customers and sellers in daily life. It means providing the users with products and services they are interested in. Therecommendation systems need users' previous shopping activities and digital footprints to make best recommendation purpose for next item shopping. We developed the recommendation models in Amazon AWS Cloud services to predict the users' ratings for the items with the massive data set of Amazon customer reviews. We also present Big Data architecture to afford the large scale data set for storing and computation. And, we adopted deep learning for machine learning community as it is known that it has higher accuracy for the massive data set. In the end, a comparative conclusion in terms of the accuracy as well as the performance is illustrated with the Deep Learning architecture with Spark ML and the traditional Big Data architecture, Spark ML alone.

딥러닝을 이용한 시퀀스 기반의 여행경로 추천시스템 -제주도 사례- (Sequence-Based Travel Route Recommendation Systems Using Deep Learning - A Case of Jeju Island -)

  • 이희준;이원석;최인혁;이충권
    • 스마트미디어저널
    • /
    • 제9권1호
    • /
    • pp.45-50
    • /
    • 2020
  • 딥 러닝의 발전에 따라 추천시스템에서 딥 러닝 기반의 인공신경망을 활용한 연구가 활발히 진행되고 있다. 특히, RNN(Recurrent Neural Network)기반의 추천시스템은 데이터의 순차적 특성을 고려하기 때문에 추천시스템에서 좋은 성과를 보여주고 있다. 본 연구는 RNN기반의 알고리즘인 GRU(Gated Recurrent Unit)와 세션 기반 병렬 미니배치(Session Parallel mini-batch)기법을 활용한 여행경로 추천 시스템을 제안한다. 본 연구는 top1과 bpr(Bayesian personalized ranking) 오차함수의 앙상블을 통해 추천 성과를 향상시켰다. 또한, 데이터 내에 순차적인 특성을 고려한 RNN기반 추천 시스템은 여행경로에 내재된 여행지의 의미가 반영된 추천이 이루어진다는 것을 확인되었다.

신경망 협업 필터링을 이용한 운동 추천시스템 (Exercise Recommendation System Using Deep Neural Collaborative Filtering)

  • 정우용;경찬욱;이승우;김수현;선영규;김진영
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권6호
    • /
    • pp.173-178
    • /
    • 2022
  • 최근, 소셜 네트워크 서비스에서 딥러닝을 활용한 추천시스템이 활발하게 연구되고 있다. 하지만 딥러닝을 이용한 추천시스템의 경우 콜드스타트 문제와 복잡한 연산으로 인해 늘어난 학습시간이 단점으로 존재한다. 본 논문에서는 사용자의 메타데이터를 활용하여 사용자 맞춤형 운동 루틴 추천 알고리즘을 제안한다. 본 논문에서 제안하는 알고리즘은 메타데이터(사용자의 키, 몸무게, 성, 등)를 입력받아 설계된 모델에 적용한다. 본 논문에서 제안한 운동 추천시스템 모델은 matrix factorization 알고리즘과 multi-layer perceptron을 활용한 neural collaborative filtering(NCF) 알고리즘을 기반으로 설계된다. 제안된 모델은 사용자 메타데이터와 운동 정보를 입력받아 학습을 진행한다. 학습이 완료된 모델은 특정 운동이 입력되면 사용자에게 추천도를 제공한다. 실험 결과에서 제안하는 운동 추천시스템 모델이 기존 NCF 모델보다 10% 추천 성능 향상과 50% 학습 시간 단축을 보였다.

Recommendation system using Deep Autoencoder for Tensor data

  • Park, Jina;Yong, Hwan-Seung
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권8호
    • /
    • pp.87-93
    • /
    • 2019
  • These days, as interest in the recommendation system with deep learning is increasing, a number of related studies to develop a performance for collaborative filtering through autoencoder, a state-of-the-art deep learning neural network architecture has advanced considerably. The purpose of this study is to propose autoencoder which is used by the recommendation system to predict ratings, and we added more hidden layers to the original architecture of autoencoder so that we implemented deep autoencoder with 3 to 5 hidden layers for much deeper architecture. In this paper, therefore we make a comparison between the performance of them. In this research, we use 2-dimensional arrays and 3-dimensional tensor as the input dataset. As a result, we found a correlation between matrix entry of the 3-dimensional dataset such as item-time and user-time and also figured out that deep autoencoder with extra hidden layers generalized even better performance than autoencoder.

Research on Personalized Course Recommendation Algorithm Based on Att-CIN-DNN under Online Education Cloud Platform

  • Xiaoqiang Liu;Feng Hou
    • Journal of Information Processing Systems
    • /
    • 제20권3호
    • /
    • pp.360-374
    • /
    • 2024
  • A personalized course recommendation algorithm based on deep learning in an online education cloud platform is proposed to address the challenges associated with effective information extraction and insufficient feature extraction. First, the user potential preferences are obtained through the course summary, course review information, user course history, and other data. Second, by embedding, the word vector is turned into a low-dimensional and dense real-valued vector, which is then fed into the compressed interaction network-deep neural network model. Finally, considering that learners and different interactive courses play different roles in the final recommendation and prediction results, an attention mechanism is introduced. The accuracy, recall rate, and F1 value of the proposed method are 0.851, 0.856, and 0.853, respectively, when the length of the recommendation list K is 35. Consequently, the proposed strategy outperforms the comparison model in terms of recommending customized course resources.