• Title/Summary/Keyword: Deep learning enhancement

Search Result 118, Processing Time 0.027 seconds

Deep Learning-based Time Series Data Prediction Research for Performance Enhancement in Cloud Monitoring Systems (클라우드 모니터링 시스템의 성능 향상을 위한 딥러닝을 이용한 시계열 데이터 예측 연구)

  • 김동완;홍두표;신용태
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.342-344
    • /
    • 2023
  • 클라우드 시장의 성장과 마이크로 서비스 접근식이 제기됨에 따라 IT인프라를 관리하기 위한 연구가 최근 활발히 이루어지고 있다. 하지만 고도화 및 분산된 환경에서 관찰 가능성 응용을 확보하기 어렵다는 문제점을 가지고 있다. 따라서 본 연구에서는 모니터링 시스템을 통한 데이터 분석 중 수집한 데이터의 분석이 난해하다는 문제를 해결하기 위한 방법을 제안한다. 제안된 방법은 NAB 데이터셋을 대상으로 STUMPY를 이용하여 데이터를 시각화하고, CNN을 이용하여 분류 작업을 수행한다. 분류를 수행한 데이터셋은 이상치 데이터와 이상 전조 데이터, 정상 데이터셋으로 분류하여 데이터셋을 구성한다. 구성한 학습 데이터셋에 대해 훈련을 마친 딥러닝 모델은 부하 테스트 환경에서 수집한 데이터에 대한 그래프 패턴을 분석하여 이상치 데이터와 이상 전조 데이터를 탐지한다.

Recognition of GUI Widgets Utilizing Translational Embeddings based on Relational Learning (트랜슬레이션 임베딩 기반 관계 학습을 이용한 GUI 위젯 인식)

  • Park, Min-Su;Seok, Ho-Sik
    • Journal of IKEEE
    • /
    • v.22 no.3
    • /
    • pp.693-699
    • /
    • 2018
  • CNN based object recognitions have reported splendid results. However, the recognition of mobile apps raises an interesting challenge that recognition performance of similar widgets is not consistent. In order to improve the performance, we propose a noble method utilizing relations between input widgets. The recognition process flows from the Faster R-CNN based recognition to enhancement using a relation recognizer. The relations are represented as vector translation between objects in a relation space. Experiments on 323 apps show that our method significantly enhances the Faster R-CNN only approach.

The Educational Effects of the Experience of Nursing Students' Patients Role in the Simulation Practice Education for the Women's Health Nursing (여성건강간호학의 시뮬레이션 실습교육에서 간호대학생의 환자역할경험의 교육적 효과)

  • Lee, Bo Gyeong;Kim, Sun-Hee
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.25 no.4
    • /
    • pp.436-447
    • /
    • 2019
  • Purpose: The purpose of this study is to identify the educational effect among nursing students who performed the patient role in women's health nursing simulations. Methods: In this exploratory qualitative study, a sample of 31 third- and fourth-grade nursing students who participated in scenario-based patient roles in clinical performance examination of the women's health nursing simulation practice training. Data were collected through focus group interviews. Qualitative data were analyzed using qualitative content analysis. Results: Three themes emerged from the data analysis. Participants experienced an enhancement of patient-centered nursing competence, deep learning immersion and display of self-regulated learning. The difficulty of performing the patient role contributed additional effects such as the difficulty to perform the patient role in the psychological training environment. Conclusion: It is recommended to utilize nursing students as patients in simulation practice training. On the other hand, the psychological training environment can cause difficulties in performing patient roles, a burden on the role of the patient, and involves the interruption of the role.

Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective

  • Jung, Hyung-Jo;Lee, Jin-Hwan;Yoon, Sungsik;Kim, In-Ho
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.669-681
    • /
    • 2019
  • Bridge collapses may deliver a huge impact on our society in a very negative way. Out of many reasons why bridges collapse, poor maintenance is becoming a main contributing factor to many recent collapses. Furthermore, the aging of bridges is able to make the situation much worse. In order to prevent this unwanted event, it is indispensable to conduct continuous bridge monitoring and timely maintenance. Visual inspection is the most widely used method, but it is heavily dependent on the experience of the inspectors. It is also time-consuming, labor-intensive, costly, disruptive, and even unsafe for the inspectors. In order to address its limitations, in recent years increasing interests have been paid to the use of unmanned aerial vehicles (UAVs), which is expected to make the inspection process safer, faster and more cost-effective. In addition, it can cover the area where it is too hard to reach by inspectors. However, this strategy is still in a primitive stage because there are many things to be addressed for real implementation. In this paper, a typical procedure of bridge inspection using UAVs consisting of three phases (i.e., pre-inspection, inspection, and post-inspection phases) and the detailed tasks by phase are described. Also, three major challenges, which are related to a UAV's flight, image data acquisition, and damage identification, respectively, are identified from a practical perspective (e.g., localization of a UAV under the bridge, high-quality image capture, etc.) and their possible solutions are discussed by examining recently developed or currently developing techniques such as the graph-based localization algorithm, and the image quality assessment and enhancement strategy. In particular, deep learning based algorithms such as R-CNN and Mask R-CNN for classifying, localizing and quantifying several damage types (e.g., cracks, corrosion, spalling, efflorescence, etc.) in an automatic manner are discussed. This strategy is based on a huge amount of image data obtained from unmanned inspection equipment consisting of the UAV and imaging devices (vision and IR cameras).

A New Image Analysis Method based on Regression Manifold 3-D PCA (회귀 매니폴드 3-D PCA 기반 새로운 이미지 분석 방법)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.103-108
    • /
    • 2022
  • In this paper, we propose a new image analysis method based on regression manifold 3-D PCA. The proposed method is a new image analysis method consisting of a regression analysis algorithm with a structure designed based on an autoencoder capable of nonlinear expansion of manifold 3-D PCA and PCA for efficient dimension reduction when entering large-capacity image data. With the configuration of an autoencoder, a regression manifold 3-DPCA, which derives the best hyperplane through three-dimensional rotation of image pixel values, and a Bayesian rule structure similar to a deep learning structure, are applied. Experiments are performed to verify performance. The image is improved by utilizing the fine dust image, and accuracy performance evaluation is performed through the classification model. As a result, it can be confirmed that it is effective for deep learning performance.

Analysis of Piezoresistive Properties of Cement Composites with Fly Ash and Carbon Nanotubes Using Transformer Algorithm (트랜스포머 알고리즘을 활용한 탄소나노튜브와 플라이애시 혼입 시멘트 복합재료의 압저항 특성 분석)

  • Jonghyeok Kim;Jinho Bang;Haemin Jeon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.6
    • /
    • pp.415-421
    • /
    • 2023
  • In this study, the piezoresistive properties of cementitious composites enhanced with carbon nanotubes for improved electrical conductivity were analyzed using a deep learning-based transformer algorithm. Experimental execution was performed in parallel for acquisition of training data. Previous studies on mixture design, specimen fabrication, chemical composition analysis, and piezoresistive performance testing are also reviewed in this paper. Notably, specimens in which fly ash substituted 50% of the binder material were fabricated and evaluated in this study, in addition to carbon nanotube-infused specimens, thereby exploring the potential enhancement of piezoresistive characteristics in conductive cementitious materials. The experimental results showed more stable piezoresistive responses in specimens with fly-ash substituted binder. The transformer model was trained using 80% of the gathered data, with the remaining 20% employed for validation. The analytical outcomes were generally consistent with empirical measurements, yielding an average absolute error and root mean square error between 0.069 to 0.074 and 0.124 to 0.132, respectively.

Study of the Application of VQA Deep Learning Technology to the Operation and Management of Urban Parks - Analysis of SNS Images - (도시공원 운영 및 관리를 위한 VQA 딥러닝 기술 활용 연구 - SNS 이미지 분석을 중심으로 -)

  • Lee, Da-Yeon;Park, Seo-Eun;Lee, Jae Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.5
    • /
    • pp.44-56
    • /
    • 2023
  • This research explores the enhancement of park operation and management by analyzing the changing demands of park users. While traditional methods depended on surveys, there has been a recent shift towards utilizing social media data to understand park usage trends. Notably, most research has focused on text data from social media, overlooking the valuable insights from image data. Addressing this gap, our study introduces a novel method of assessing park usage using social media image data and then applies it to actual city park evaluations. A unique image analysis tool, built on Visual Question Answering (VQA) deep learning technology, was developed. This tool revealed specific city park details such as user demographics, behaviors, and locations. Our findings highlight three main points: (1) The VQA-based image analysis tool's validity was proven by matching its results with traditional text analysis outcomes. (2) VQA deep learning technology offers insights like gender, age, and usage time, which aren't accessible from text analysis alone. (3) Using VQA, we derived operational and management strategies for city parks. In conclusion, our VQA-based method offers significant methodological advancements for future park usage studies.

Validation of Deep-Learning Image Reconstruction for Low-Dose Chest Computed Tomography Scan: Emphasis on Image Quality and Noise

  • Joo Hee Kim;Hyun Jung Yoon;Eunju Lee;Injoong Kim;Yoon Ki Cha;So Hyeon Bak
    • Korean Journal of Radiology
    • /
    • v.22 no.1
    • /
    • pp.131-138
    • /
    • 2021
  • Objective: Iterative reconstruction degrades image quality. Thus, further advances in image reconstruction are necessary to overcome some limitations of this technique in low-dose computed tomography (LDCT) scan of the chest. Deep-learning image reconstruction (DLIR) is a new method used to reduce dose while maintaining image quality. The purposes of this study was to evaluate image quality and noise of LDCT scan images reconstructed with DLIR and compare with those of images reconstructed with the adaptive statistical iterative reconstruction-Veo at a level of 30% (ASiR-V 30%). Materials and Methods: This retrospective study included 58 patients who underwent LDCT scan for lung cancer screening. Datasets were reconstructed with ASiR-V 30% and DLIR at medium and high levels (DLIR-M and DLIR-H, respectively). The objective image signal and noise, which represented mean attenuation value and standard deviation in Hounsfield units for the lungs, mediastinum, liver, and background air, and subjective image contrast, image noise, and conspicuity of structures were evaluated. The differences between CT scan images subjected to ASiR-V 30%, DLIR-M, and DLIR-H were evaluated. Results: Based on the objective analysis, the image signals did not significantly differ among ASiR-V 30%, DLIR-M, and DLIR-H (p = 0.949, 0.737, 0.366, and 0.358 in the lungs, mediastinum, liver, and background air, respectively). However, the noise was significantly lower in DLIR-M and DLIR-H than in ASiR-V 30% (all p < 0.001). DLIR had higher signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) than ASiR-V 30% (p = 0.027, < 0.001, and < 0.001 in the SNR of the lungs, mediastinum, and liver, respectively; all p < 0.001 in the CNR). According to the subjective analysis, DLIR had higher image contrast and lower image noise than ASiR-V 30% (all p < 0.001). DLIR was superior to ASiR-V 30% in identifying the pulmonary arteries and veins, trachea and bronchi, lymph nodes, and pleura and pericardium (all p < 0.001). Conclusion: DLIR significantly reduced the image noise in chest LDCT scan images compared with ASiR-V 30% while maintaining superior image quality.

Color-Image Guided Depth Map Super-Resolution Based on Iterative Depth Feature Enhancement

  • Lijun Zhao;Ke Wang;Jinjing, Zhang;Jialong Zhang;Anhong Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2068-2082
    • /
    • 2023
  • With the rapid development of deep learning, Depth Map Super-Resolution (DMSR) method has achieved more advanced performances. However, when the upsampling rate is very large, it is difficult to capture the structural consistency between color features and depth features by these DMSR methods. Therefore, we propose a color-image guided DMSR method based on iterative depth feature enhancement. Considering the feature difference between high-quality color features and low-quality depth features, we propose to decompose the depth features into High-Frequency (HF) and Low-Frequency (LF) components. Due to structural homogeneity of depth HF components and HF color features, only HF color features are used to enhance the depth HF features without using the LF color features. Before the HF and LF depth feature decomposition, the LF component of the previous depth decomposition and the updated HF component are combined together. After decomposing and reorganizing recursively-updated features, we combine all the depth LF features with the final updated depth HF features to obtain the enhanced-depth features. Next, the enhanced-depth features are input into the multistage depth map fusion reconstruction block, in which the cross enhancement module is introduced into the reconstruction block to fully mine the spatial correlation of depth map by interleaving various features between different convolution groups. Experimental results can show that the two objective assessments of root mean square error and mean absolute deviation of the proposed method are superior to those of many latest DMSR methods.

Combining multi-task autoencoder with Wasserstein generative adversarial networks for improving speech recognition performance (음성인식 성능 개선을 위한 다중작업 오토인코더와 와설스타인식 생성적 적대 신경망의 결합)

  • Kao, Chao Yuan;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.6
    • /
    • pp.670-677
    • /
    • 2019
  • As the presence of background noise in acoustic signal degrades the performance of speech or acoustic event recognition, it is still challenging to extract noise-robust acoustic features from noisy signal. In this paper, we propose a combined structure of Wasserstein Generative Adversarial Network (WGAN) and MultiTask AutoEncoder (MTAE) as deep learning architecture that integrates the strength of MTAE and WGAN respectively such that it estimates not only noise but also speech features from noisy acoustic source. The proposed MTAE-WGAN structure is used to estimate speech signal and the residual noise by employing a gradient penalty and a weight initialization method for Leaky Rectified Linear Unit (LReLU) and Parametric ReLU (PReLU). The proposed MTAE-WGAN structure with the adopted gradient penalty loss function enhances the speech features and subsequently achieve substantial Phoneme Error Rate (PER) improvements over the stand-alone Deep Denoising Autoencoder (DDAE), MTAE, Redundant Convolutional Encoder-Decoder (R-CED) and Recurrent MTAE (RMTAE) models for robust speech recognition.