• Title/Summary/Keyword: Deep learning enhancement

Search Result 118, Processing Time 0.025 seconds

Deep Network for Detail Enhancement in Image Denoising (영상 잡음 제거에서의 디테일 향상을 위한 심층 신경망)

  • Kim, Sung Jun;Jung, Yong Ju
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.6
    • /
    • pp.646-654
    • /
    • 2019
  • Image denoising is considered as a key factor for capturing high-quality photos in digital cameras. Thus far, several image denoising methods have been proposed in the past decade. In addition, previous studies either relied on deep learning-based approaches or used the hand-crafted filters. Unfortunately, the previous method mostly emphasized on image denoising regardless of preserving or recovering the detail information in result images. This study proposes an detail extraction network to estimate detail information from a noisy input image. Moreover, the extracted detail information is utilized to enhance the final denoised image. Experimental results demonstrate that the proposed method can outperform the existing works by a subjective measurement.

Coreset Construction for Character Recognition of PCB Components Based on Deep Learning (딥러닝 기반의 PCB 부품 문자인식을 위한 코어 셋 구성)

  • Gang, Su Myung;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.382-395
    • /
    • 2021
  • In this study, character recognition using deep learning is performed among the various defects in the PCB, the purpose of which is to check whether the printed characters are printed correctly on top of components, or the incorrect parts are attached. Generally, character recognition may be perceived as not a difficult problem when considering MNIST, but the printed letters on the PCB component data are difficult to collect, and have very high redundancy. So if a deep learning model is trained with original data without any preprocessing, it can lead to over fitting problems. Therefore, this study aims to reduce the redundancy to the smallest dataset that can represent large amounts of data collected in limited production sites, and to create datasets through data enhancement to train a flexible deep learning model can be used in various production sites. Moreover, ResNet model verifies to determine which combination of datasets is the most effective. This study discusses how to reduce and augment data that is constantly occurring in real PCB production lines, and discusses how to select coresets to learn and apply deep learning models in real sites.

Deep Learning-Based Reconstruction Algorithm With Lung Enhancement Filter for Chest CT: Effect on Image Quality and Ground Glass Nodule Sharpness

  • Min-Hee Hwang;Shinhyung Kang;Ji Won Lee;Geewon Lee
    • Korean Journal of Radiology
    • /
    • v.25 no.9
    • /
    • pp.833-842
    • /
    • 2024
  • Objective: To assess the effect of a new lung enhancement filter combined with deep learning image reconstruction (DLIR) algorithm on image quality and ground-glass nodule (GGN) sharpness compared to hybrid iterative reconstruction or DLIR alone. Materials and Methods: Five artificial spherical GGNs with various densities (-250, -350, -450, -550, and -630 Hounsfield units) and 10 mm in diameter were placed in a thorax anthropomorphic phantom. Four scans at four different radiation dose levels were performed using a 256-slice CT (Revolution Apex CT, GE Healthcare). Each scan was reconstructed using three different reconstruction algorithms: adaptive statistical iterative reconstruction-V at a level of 50% (AR50), Truefidelity (TF), which is a DLIR method, and TF with a lung enhancement filter (TF + Lu). Thus, 12 sets of reconstructed images were obtained and analyzed. Image noise, signal-to-noise ratio, and contrast-to-noise ratio were compared among the three reconstruction algorithms. Nodule sharpness was compared among the three reconstruction algorithms using the full-width at half-maximum value. Furthermore, subjective image quality analysis was performed. Results: AR50 demonstrated the highest level of noise, which was decreased by using TF + Lu and TF alone (P = 0.001). TF + Lu significantly improved nodule sharpness at all radiation doses compared to TF alone (P = 0.001). The nodule sharpness of TF + Lu was similar to that of AR50. Using TF alone resulted in the lowest nodule sharpness. Conclusion: Adding a lung enhancement filter to DLIR (TF + Lu) significantly improved the nodule sharpness compared to DLIR alone (TF). TF + Lu can be an effective reconstruction technique to enhance image quality and GGN evaluation in ultralow-dose chest CT scans.

Performance Enhancement Technique of Visible Communication Systems based on Deep-Learning (딥러닝 기반 가시광 통신 시스템의 성능 향상 기법)

  • Seo, Sung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.4
    • /
    • pp.51-55
    • /
    • 2021
  • In this paper, we propose the deep learning based interference cancellation scheme algorithm for visible light communication (VLC) systems in smart building. The proposed scheme estimates the channel noise information by applying a deep learning model. Then, the estimated channel noise is updated in database. In the modulator, the channel noise which reduces the VLC performance is effectively removed through interference cancellation technique. The performance is evaluated in terms of bit error rate (BER). From the simulation results, it is confirmed that the proposed scheme has better BER performance. Consequently, the proposed interference cancellation with deep learning improves the signal quality of VLC systems by effectively removing the channel noise. The results of the paper can be applied to VLC for smart building and general communication systems.

EDMFEN: Edge detection-based multi-scale feature enhancement Network for low-light image enhancement

  • Canlin Li;Shun Song;Pengcheng Gao;Wei Huang;Lihua Bi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.980-997
    • /
    • 2024
  • To improve the brightness of images and reveal hidden information in dark areas is the main objective of low-light image enhancement (LLIE). LLIE methods based on deep learning show good performance. However, there are some limitations to these methods, such as the complex network model requires highly configurable environments, and deficient enhancement of edge details leads to blurring of the target content. Single-scale feature extraction results in the insufficient recovery of the hidden content of the enhanced images. This paper proposed an edge detection-based multi-scale feature enhancement network for LLIE (EDMFEN). To reduce the loss of edge details in the enhanced images, an edge extraction module consisting of a Sobel operator is introduced to obtain edge information by computing gradients of images. In addition, a multi-scale feature enhancement module (MSFEM) consisting of multi-scale feature extraction block (MSFEB) and a spatial attention mechanism is proposed to thoroughly recover the hidden content of the enhanced images and obtain richer features. Since the fused features may contain some useless information, the MSFEB is introduced so as to obtain the image features with different perceptual fields. To use the multi-scale features more effectively, a spatial attention mechanism module is used to retain the key features and improve the model performance after fusing multi-scale features. Experimental results on two datasets and five baseline datasets show that EDMFEN has good performance when compared with the stateof-the-art LLIE methods.

Algorithm for Improving Visibility under Ambient Lighting Using Deep Learning (딥러닝을 이용한 외부 조도 아래에서의 시인성 향상 알고리즘)

  • Lee, Hee Jin;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.27 no.5
    • /
    • pp.808-811
    • /
    • 2022
  • Display under strong ambient lighting is perceived darker than it really is. Existing techniques for solving the problem in terms of software show limitations in that image enhancement techniques are applied regardless of ambient lighting or chrominance is not improved compared to luminance. Therefore, this paper proposes a visibility enhancement algorithm using deep learning to adaptively respond to ambient lighting values and an equation to restore optimal chrominance for luminance. The algorithm receives an ambient lighting value with the input image, and then applies a deep learning model and chrominance restoration equation to generate an image to minimize the difference between the degradation modeling of enhanced image and the input image. Qualitative evaluation proves that the algorithm shows excellent performance in improving visibility under strong ambient lighting through comparison of images applied with degradation modeling.

Deep Learning based Object Detector for Vehicle Recognition on Images Acquired with Fisheye Lens Cameras (어안렌즈 카메라로 획득한 영상에서 차량 인식을 위한 딥러닝 기반 객체 검출기)

  • Hieu, Tang Quang;Yeon, Sungho;Kim, Jaemin
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.128-135
    • /
    • 2019
  • This paper presents a deep learning-based object detection method for recognizing vehicles in images acquired through cameras installed on ceiling of underground parking lot. First, we present an image enhancement method, which improves vehicle detection performance under dark lighting environment. Second, we present a new CNN-based multiscale classifiers for detecting vehicles in images acquired through cameras with fisheye lens. Experiments show that the presented vehicle detector has better performance than the conventional ones.

Pixel-Wise Polynomial Estimation Model for Low-Light Image Enhancement

  • Muhammad Tahir Rasheed;Daming Shi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2483-2504
    • /
    • 2023
  • Most existing low-light enhancement algorithms either use a large number of training parameters or lack generalization to real-world scenarios. This paper presents a novel lightweight and robust pixel-wise polynomial approximation-based deep network for low-light image enhancement. For mapping the low-light image to the enhanced image, pixel-wise higher-order polynomials are employed. A deep convolution network is used to estimate the coefficients of these higher-order polynomials. The proposed network uses multiple branches to estimate pixel values based on different receptive fields. With a smaller receptive field, the first branch enhanced local features, the second and third branches focused on medium-level features, and the last branch enhanced global features. The low-light image is downsampled by the factor of 2b-1 (b is the branch number) and fed as input to each branch. After combining the outputs of each branch, the final enhanced image is obtained. A comprehensive evaluation of our proposed network on six publicly available no-reference test datasets shows that it outperforms state-of-the-art methods on both quantitative and qualitative measures.

Spatiotemporal Resolution Enhancement of PM10 Concentration Data Using Satellite Image and Sensor Data in Deep Learning (위성 영상과 관측 센서 데이터를 이용한 PM10농도 데이터의 시공간 해상도 향상 딥러닝 모델 설계)

  • Baek, Chang-Sun;Yom, Jae-Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.517-523
    • /
    • 2019
  • PM10 concentration is a spatiotemporal phenomenta and capturing data for such continuous phenomena is a difficult task. This study designed a model that enhances spatiotemporal resolution of PM10 concentration levels using satellite imagery, atmospheric and meteorological sensor data, and multiple deep learning models. The designed deep learning model was trained using input data whose factors may affect concentration of PM10 such as meteorological conditions and land-use. Using this model, PM10 images having 15 minute temporal resolution and 30m×30m spatial resolution were produced with only atmospheric and meteorological data.

Effect Analysis of a Deep Learning-Based Attention Redirection Compensation Strategy System on the Data Labeling Work Productivity of Individuals with Developmental Disabilities (딥러닝 기반의 주의환기 보상전략 시스템이 발달장애인의 데이터 라벨링 작업 생산성에 미치는 효과분석)

  • Yong-Man Ha;Jong-Wook Jang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.175-180
    • /
    • 2024
  • This paper investigates the effect of a deep learning-based system on data labeling task productivity by individuals with developmental disabilities. It was found that interventions, particularly those using AI, significantly improved productivity compared to self-serving task. AI interventions were notably more effective than job coach-led approaches. This research underscores the positive role of AI in enhancing task efficiency for those with developmental disabilities. This study is the first to apply AI technology to the data labeling tasks of individuals with developmental disabilities and highlighting deep learning's potential in vocational training and productivity enhancement for this group.