• 제목/요약/키워드: Deep ensemble

검색결과 130건 처리시간 0.027초

Neural Networks-Based Method for Electrocardiogram Classification

  • Maksym Kovalchuk;Viktoriia Kharchenko;Andrii Yavorskyi;Igor Bieda;Taras Panchenko
    • International Journal of Computer Science & Network Security
    • /
    • 제23권9호
    • /
    • pp.186-191
    • /
    • 2023
  • Neural Networks are widely used for huge variety of tasks solution. Machine Learning methods are used also for signal and time series analysis, including electrocardiograms. Contemporary wearable devices, both medical and non-medical type like smart watch, allow to gather the data in real time uninterruptedly. This allows us to transfer these data for analysis or make an analysis on the device, and thus provide preliminary diagnosis, or at least fix some serious deviations. Different methods are being used for this kind of analysis, ranging from medical-oriented using distinctive features of the signal to machine learning and deep learning approaches. Here we will demonstrate a neural network-based approach to this task by building an ensemble of 1D CNN classifiers and a final classifier of selection using logistic regression, random forest or support vector machine, and make the conclusions of the comparison with other approaches.

YOLO 모델 앙상블을 이용한 복잡한 장면에서의 Mask Detection 기법 (Mask detection in complex scenes using an ensemble of YOLO models)

  • 후쉬펑;임현석;곽정환
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.97-98
    • /
    • 2022
  • 코로나바이러스-19 팬데믹 이후 매일 수만 명의 환자가 발생하고 있다. 보건당국은 사람들의 생활 안전을 보호하기 위해 공항, 정류장 등 공공장소에서는 반드시 마스크를 착용하라고 지시하고 있다. 마스크를 착용하는 목적은 감염으로부터 신체를 보호하고 바이러스 전파와 확산을 막기 위한 것이다. 공공장소에서는 많은 인원에 대한 일괄적인 마스크 착용 검사를 하기 어렵고, 육안으로 확인하는 마스크 착용 검사 방법은 인파가 몰리는 장소에서 검사 효율이 떨어지며 누락되는 경우도 많이 발생한다. 본 연구에서는 입력 이미지에 존재하는 얼굴 영역을 YOLOv4와 YOLOv5 모델을 통해 예측하여 마스크의 착용 여부를 판단하되, 앙상블 기법을 적용하여 보다 효과적인 BB(Bounding Box) 추출 및 마스크 착용 탐지 기법을 적용한다. 따라서 공공장소의 마스크 착용실태를 효과적으로 모니터링 할 수 있는 방법을 제안한다.

  • PDF

한국 사회의 ADHD 증가 요인 분석 (Factors contributing to the Increase of ADHD in Korea )

  • 김수경;김현희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.456-457
    • /
    • 2023
  • ADHD(과활동성 주의력 결핍 장애) 환자 수가 증가하며 주의력 집중이 사회적 문제로 대두되고 있다. 그러나 ADHD에 대한 이해나 요인에 대한 연구는 미흡하다. 본 연구에서는 아동기 전신마취가 ADHD 발생에 영향이 있다는 연구를 기반으로, 상관관계 분석과 선형회귀분석, Lasso Regression, Support Vector Regression, Deep Neural Network, Ensemble, Random Forest Regression을 활용하여 ADHD 증가 요인에 대해 탐구했다. 분석 결과는 전신 마취에 노출될 가능성이 높은 아동의 경우 ADHD에 노출될 가능성 역시 높을 수 있음을 시사한다.

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • 제29권1호
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.

전지구 해양 재분석 자료 비교 분석 (Intercomparison of the Global Ocean Reanalysis Data)

  • 장유순
    • 한국해양학회지:바다
    • /
    • 제20권2호
    • /
    • pp.102-118
    • /
    • 2015
  • 본 연구에서는 국제 공동 해양 재분석 자료 비교 프로젝트 결과를 요약하였다. 다양한 재분석 자료 생산 시스템의 종류 및 특성을 소개하였으며, 대표적인 8가지 해양 변수(열용량, 열염분 높이, 해수면 높이, 표층 열속, 혼합층 깊이, 아표층염분, $20^{\circ}C$ 등온선 깊이, 해빙)에 대한 전지구 해양 자료 동화 모델 성능을 비교 분석하였다. 일반적으로 단일 재분석 자료 결과보다 앙상블 평균 값이 비교적 높은 성능을 나타내었으나, 검증 변수와 해역에 따라 서로 다른 특징을 보였다. 해양 변수 중에는 염분 및 해빙 변동이 모델간 가장 큰 편차를 보였다. 심층 해역, 남극해, 서안 경계 해역을 포함한 연안역에서는 공통적으로 객관 분석장과 동화 모델간의 편차가 크게 나타났다. 국내에서도 독립적으로 운영되고 있는 해양 자료 동화 모델간의 비교 분석 프로그램이 추진되어, 향후 관련된 국제 공동 연구에 활발히 참여할 수 있는 기회가 확대되기를 기대한다.

드론과 A.I.를 이용한 특수교 주탑부 표면 손상 탐지 방법 연구 (A Study on the Surface Damage Detection Method of the Main Tower of a Special Bridge Using Drones and A.I.)

  • 이성진;주봉철;김정호;이태희
    • 한국방재안전학회논문집
    • /
    • 제16권4호
    • /
    • pp.129-136
    • /
    • 2023
  • 높은 주탑을 가지는 해상특수교량은 특수한 구조적 특징으로 인해 육안점검이 어려운 점검사각지대가 존재하게 되며, 이를 해결하기 위해 드론을 활용한 안전점검 방법들이 연구되고 있다. 본 연구에서는 드론을 이용하여 해상특수교량 주탑의 영상 데이터를 취득하고, 인공지능 알고리즘을 개발하여 주탑부 표면 손상에 대한 탐지를 수행하였다. 인공지능 알고리즘은 서로 다른 구조를 지닌 딥러닝 네트워크를 활용하여 앙상블을 형성한 모델을 구축하고 결과를 취합하는 스태킹 앙상블 학습법을 적용하였다.

기계학습법을 통한 압축 벤토나이트의 열전도도 추정 모델 평가 (Evaluation of a Thermal Conductivity Prediction Model for Compacted Clay Based on a Machine Learning Method)

  • 윤석;방현태;김건영;전해민
    • 대한토목학회논문집
    • /
    • 제41권2호
    • /
    • pp.123-131
    • /
    • 2021
  • 완충재는 고준위 방사성 폐기물을 처분하기 위한 공학적 방벽 시스템에서 중요한 구성요소 중 하나이며 사용 후 핵연료가 담긴 처분용기와 암반사이에 채워지는 물질이기 때문에 지하수 유입으로부터 처분용기를 보호하고, 방사성 핵종 유출을 저지하는 중요한 역할을 수행한다. 따라서 공학적 방벽 시스템의 처분용기로부터 발생하는 고온의 열량은 완충재를 통하여 전파되기에 완충재의 열전도도는 처분시스템의 안전성 평가에 매우 중요하다. 본 연구에서는 국내에서 생산되는 압축 벤토나이트 완충재의 열전도도 예측을 위한 경험적 회귀 모델의 정합성을 검증하고 정확도를 높이기 위해 예측모델의 구축에 기계학습법을 적용해 보았다. 벤토나이트의 건조밀도, 함수비 및 온도 값을 바탕으로 열전도도를 예측하고자 하였으며, 이때 다항 회귀, 결정 트리, 서포트 벡터 머신, 앙상블, 가우시안 프로세스 회귀, 인공신경망, 심층 신뢰 신경망, 유전 프로그래밍과 같은 기계학습 기법을 적용하였다. 기계학습 기법을 이용하여 예측한 결과, 부스팅 기반의 앙상블 기법, 유전 프로그래밍, 3차 함수 기반의 SVM, 가우시안 프로세스 회귀의 기계학습기법을 활용한 모델이 선형 회귀 분석 기법에 비해 좋은 성능을 보였으며, 특히 앙상블의 부스팅 기법과 가우시안 프로세스 회귀 기법을 사용한 모델들이 가장 좋은 성능을 보였다.

Transfer Learning based DNN-SVM Hybrid Model for Breast Cancer Classification

  • Gui Rae Jo;Beomsu Baek;Young Soon Kim;Dong Hoon Lim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권11호
    • /
    • pp.1-11
    • /
    • 2023
  • 유방암은 전 세계적으로 여성들 대다수에게 가장 두려워하는 질환이다. 오늘날 데이터의 증가와 컴퓨팅 기술의 향상으로 머신러닝(machine learning)의 효율성이 증대되어 암 검출 및 진단 등에 중요한 역할을 하고 있다. 딥러닝(deep learning)은 인공신경망(artificial neural network, ANN)을 기반으로 하는 머신러닝 기술의 한 분야로 최근 여러 분야에서 성능이 급속도로 개선되어 활용 범위가 확대되고 있다. 본 연구에서는 유방암 분류를 위해 전이학습(transfer learning) 기반 DNN(Deep Neural Network)과 SVM(support vector machine)의 구조를 결합한 DNN-SVM Hybrid 모형을 제안한다. 전이학습 기반 제안된 모형은 적은 학습 데이터에도 효과적이고, 학습 속도도 빠르며, 단일모형, 즉 DNN과 SVM이 가지는 장점을 모두 활용 가능토록 결합함으로써 모형 성능이 개선되었다. 제안된 DNN-SVM Hybrid 모형의 성능평가를 위해 UCI 머신러닝 저장소에서 제공하는 WOBC와 WDBC 유방암 자료를 가지고 성능실험 결과, 제안된 모형은 여러 가지 성능 척도 면에서 단일모형인 로지스틱회귀 모형, DNN, SVM 그리고 앙상블 모형인 랜덤 포레스트보다 우수함을 보였다.

합성곱 신경망을 이용한 주가방향 예측: 상관관계 속성선택 방법을 중심으로 (Stock Price Direction Prediction Using Convolutional Neural Network: Emphasis on Correlation Feature Selection)

  • 어균선;이건창
    • 경영정보학연구
    • /
    • 제22권4호
    • /
    • pp.21-39
    • /
    • 2020
  • 딥러닝(Deep learning) 기법은 패턴분석, 이미지분류 등 다양한 분야에서 높은 성과를 나타내고 있다. 특히, 주식시장 분석문제는 머신러닝 연구분야에서도 어려운 분야이므로 딥러닝이 많이 활용되는 영역이다. 본 연구에서는 패턴분석과 분류능력이 높은 딥러닝의 일종인 합성곱신경망(Convolutional Neural Network) 모델을 활용하여 주가방향 예측방법을 제안한다. 추가적으로 합성곱신경망 모델을 효율적으로 학습시키기 위한 속성선택(Feature Selection, FS)방법이 적용된다. 합성곱신경망 모델의 성과는 머신러닝 단일 분류기와 앙상블 분류기를 벤치마킹하여 객관적으로 검증된다. 본 연구에서 벤치마킹한 분류기는 로지스틱 회귀분석(Logistic Regression), 의사결정나무(Decision Tree), 인공신경망(Neural Network), 서포트 벡터머신(Support Vector Machine), 아다부스트(Adaboost), 배깅(Bagging), 랜덤포레스트(Random Forest)이다. 실증분석 결과, 속성선택을 적용한 합성곱신경망이 다른 벤치마킹 분류기보다 분류 성능이 상대적으로 높게 나타났다. 이러한 결과는 합성곱신경망 모델과 속성선택방법을 적용한 예측방법이 기업의 재무자료에 내포된 가치를 보다 정교하게 분석할 수 있는 가능성이 있음을 실증적으로 확인할 수 있었다.

산업제어시스템의 이상 탐지 성능 개선을 위한 데이터 보정 방안 연구 (Research on Data Tuning Methods to Improve the Anomaly Detection Performance of Industrial Control Systems)

  • 전상수;이경호
    • 정보보호학회논문지
    • /
    • 제32권4호
    • /
    • pp.691-708
    • /
    • 2022
  • 머신러닝과 딥러닝의 기술이 보편화되면서 산업제어시스템의 이상(비정상) 탐지 연구에도 적용이 되기 시작하였다. 국내에서는 산업제어시스템의 이상 탐지를 위한 인공지능 연구를 활성화시키기 위하여 HAI 데이터셋을 개발하여 공개하였고, 산업제어시스템 보안위협 탐지 AI 경진대회를 시행하고 있다. 이상 탐지 연구들은 대개 기존의 딥러닝 학습 알고리즘을 변형하거나 다른 알고리즘과 함께 적용하는 앙상블 학습 모델의 방법을 통해 향상된 성능의 학습 모델을 만드는 연구가 대부분 이었다. 본 연구에서는 학습 모델과 데이터 전처리(pre-processing)의 개선을 통한 방법이 아니라, 비정상 데이터를 탐지하여 라벨링 한 결과를 보정하는 후처리(post-processing) 방법으로 이상 탐지의 성능을 개선시키는 연구를 진행하였고, 그 결과 기존 모델의 이상 탐지 성능 대비 약 10%이상의 향상된 결과를 확인하였다.