• Title/Summary/Keyword: Deep convolutional neural networks

Search Result 414, Processing Time 0.024 seconds

Comparison and optimization of deep learning-based radiosensitivity prediction models using gene expression profiling in National Cancer Institute-60 cancer cell line

  • Kim, Euidam;Chung, Yoonsun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3027-3033
    • /
    • 2022
  • Background: In this study, various types of deep-learning models for predicting in vitro radiosensitivity from gene-expression profiling were compared. Methods: The clonogenic surviving fractions at 2 Gy from previous publications and microarray gene-expression data from the National Cancer Institute-60 cell lines were used to measure the radiosensitivity. Seven different prediction models including three distinct multi-layered perceptrons (MLP), four different convolutional neural networks (CNN) were compared. Folded cross-validation was applied to train and evaluate model performance. The criteria for correct prediction were absolute error < 0.02 or relative error < 10%. The models were compared in terms of prediction accuracy, training time per epoch, training fluctuations, and required calculation resources. Results: The strength of MLP-based models was their fast initial convergence and short training time per epoch. They represented significantly different prediction accuracy depending on the model configuration. The CNN-based models showed relatively high prediction accuracy, low training fluctuations, and a relatively small increase in the memory requirement as the model deepens. Conclusion: Our findings suggest that a CNN-based model with moderate depth would be appropriate when the prediction accuracy is important, and a shallow MLP-based model can be recommended when either the training resources or time are limited.

Evaluation of Deep Learning Model for Scoliosis Pre-Screening Using Preprocessed Chest X-ray Images

  • Min Gu Jang;Jin Woong Yi;Hyun Ju Lee;Ki Sik Tae
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.293-301
    • /
    • 2023
  • Scoliosis is a three-dimensional deformation of the spine that is a deformity induced by physical or disease-related causes as the spine is rotated abnormally. Early detection has a significant influence on the possibility of nonsurgical treatment. To train a deep learning model with preprocessed images and to evaluate the results with and without data augmentation to enable the diagnosis of scoliosis based only on a chest X-ray image. The preprocessed images in which only the spine, rib contours, and some hard tissues were left from the original chest image, were used for learning along with the original images, and three CNN(Convolutional Neural Networks) models (VGG16, ResNet152, and EfficientNet) were selected to proceed with training. The results obtained by training with the preprocessed images showed a superior accuracy to those obtained by training with the original image. When the scoliosis image was added through data augmentation, the accuracy was further improved, ultimately achieving a classification accuracy of 93.56% with the ResNet152 model using test data. Through supplementation with future research, the method proposed herein is expected to allow the early diagnosis of scoliosis as well as cost reduction by reducing the burden of additional radiographic imaging for disease detection.

Deep-learning based SAR Ship Detection with Generative Data Augmentation (영상 생성적 데이터 증강을 이용한 딥러닝 기반 SAR 영상 선박 탐지)

  • Kwon, Hyeongjun;Jeong, Somi;Kim, SungTai;Lee, Jaeseok;Sohn, Kwanghoon
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Ship detection in synthetic aperture radar (SAR) images is an important application in marine monitoring for the military and civilian domains. Over the past decade, object detection has achieved significant progress with the development of convolutional neural networks (CNNs) and lot of labeled databases. However, due to difficulty in collecting and labeling SAR images, it is still a challenging task to solve SAR ship detection CNNs. To overcome the problem, some methods have employed conventional data augmentation techniques such as flipping, cropping, and affine transformation, but it is insufficient to achieve robust performance to handle a wide variety of types of ships. In this paper, we present a novel and effective approach for deep SAR ship detection, that exploits label-rich Electro-Optical (EO) images. The proposed method consists of two components: a data augmentation network and a ship detection network. First, we train the data augmentation network based on conditional generative adversarial network (cGAN), which aims to generate additional SAR images from EO images. Since it is trained using unpaired EO and SAR images, we impose the cycle-consistency loss to preserve the structural information while translating the characteristics of the images. After training the data augmentation network, we leverage the augmented dataset constituted with real and translated SAR images to train the ship detection network. The experimental results include qualitative evaluation of the translated SAR images and the comparison of detection performance of the networks, trained with non-augmented and augmented dataset, which demonstrates the effectiveness of the proposed framework.

Audio Event Detection Based on Attention CRNN (Attention CRNN에 기반한 오디오 이벤트 검출)

  • Kwak, Jin-Yeol;Chung, Yong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.465-472
    • /
    • 2020
  • Recently, various deep neural networks based methods have been proposed for audio event detection. In this study, we improved the performance of audio event detection by adopting an attention approach to a baseline CRNN. We applied context gating at the input of the baseline CRNN and added an attention layer at the output. We improved the performance of the attention based CRNN by using the audio data of strong labels in frame units as well as the data of weak labels in clip levels. In the audio event detection experiments using the audio data from the Task 4 of the DCASE 2018/2019 Challenge, we could obtain maximally a 66% relative increase in the F-score in the proposed attention based CRNN compared with the baseline CRNN.

Light Field Angular Super-Resolution Algorithm Using Dilated Convolutional Neural Network with Residual Network (잔차 신경망과 팽창 합성곱 신경망을 이용한 라이트 필드 각 초해상도 기법)

  • Kim, Dong-Myung;Suh, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1604-1611
    • /
    • 2020
  • Light field image captured by a microlens array-based camera has many limitations in practical use due to its low spatial resolution and angular resolution. High spatial resolution images can be easily acquired with a single image super-resolution technique that has been studied a lot recently. But there is a problem in that high angular resolution images are distorted in the process of using disparity information inherent among images, and thus it is difficult to obtain a high-quality angular resolution image. In this paper, we propose light field angular super-resolution that extracts an initial feature map using an dilated convolutional neural network in order to effectively extract the view difference information inherent among images and generates target image using a residual neural network. The proposed network showed superior performance in PSNR and subjective image quality compared to existing angular super-resolution networks.

Implementation of Urinalysis Service Application based on MobileNetV3 (MobileNetV3 기반 요검사 서비스 어플리케이션 구현)

  • Gi-Jo Park;Seung-Hwan Choi;Kyung-Seok Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.41-46
    • /
    • 2023
  • Human urine is a process of excreting waste products in the blood, and it is easy to collect and contains various substances. Urinalysis is used to check for diseases, health conditions, and urinary tract infections. There are three methods of urinalysis: physical property test, chemical test, and microscopic test, and chemical test results can be easily confirmed using urine test strips. A variety of items can be tested on the urine test strip, through which various diseases can be identified. Recently, with the spread of smart phones, research on reading urine test strips using smart phones is being conducted. There is a method of detecting and reading the color change of a urine test strip using a smartphone. This method uses the RGB values and the color difference formula to discriminate. However, there is a problem in that accuracy is lowered due to various environmental factors. This paper applies a deep learning model to solve this problem. In particular, color discrimination of a urine test strip is improved in a smartphone using a lightweight CNN (Convolutional Neural Networks) model. CNN is a useful model for image recognition and pattern finding, and a lightweight version is also available. Through this, it is possible to operate a deep learning model on a smartphone and extract accurate urine test results. Urine test strips were taken in various environments to prepare deep learning model training images, and a urine test service application was designed using MobileNet V3.

Interpolation based Single-path Sub-pixel Convolution for Super-Resolution Multi-Scale Networks

  • Alao, Honnang;Kim, Jin-Sung;Kim, Tae Sung;Oh, Juhyen;Lee, Kyujoong
    • Journal of Multimedia Information System
    • /
    • v.8 no.4
    • /
    • pp.203-210
    • /
    • 2021
  • Deep leaning convolutional neural networks (CNN) have successfully been applied to image super-resolution (SR). Despite their great performances, SR techniques tend to focus on a certain upscale factor when training a particular model. Algorithms for single model multi-scale networks can easily be constructed if images are upscaled prior to input, but sub-pixel convolution upsampling works differently for each scale factor. Recent SR methods employ multi-scale and multi-path learning as a solution. However, this causes unshared parameters and unbalanced parameter distribution across various scale factors. We present a multi-scale single-path upsample module as a solution by exploiting the advantages of sub-pixel convolution and interpolation algorithms. The proposed model employs sub-pixel convolution for the highest scale factor among the learning upscale factors, and then utilize 1-dimension interpolation, compressing the learned features on the channel axis to match the desired output image size. Experiments are performed for the single-path upsample module, and compared to the multi-path upsample module. Based on the experimental results, the proposed algorithm reduces the upsample module's parameters by 24% and presents slightly to better performance compared to the previous algorithm.

Building Energy Time Series Data Mining for Behavior Analytics and Forecasting Energy consumption

  • Balachander, K;Paulraj, D
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.1957-1980
    • /
    • 2021
  • The significant aim of this research has always been to evaluate the mechanism for efficient and inherently aware usage of vitality in-home devices, thus improving the information of smart metering systems with regard to the usage of selected homes and the time of use. Advances in information processing are commonly used to quantify gigantic building activity data steps to boost the activity efficiency of the building energy systems. Here, some smart data mining models are offered to measure, and predict the time series for energy in order to expose different ephemeral principles for using energy. Such considerations illustrate the use of machines in relation to time, such as day hour, time of day, week, month and year relationships within a family unit, which are key components in gathering and separating the effect of consumers behaviors in the use of energy and their pattern of energy prediction. It is necessary to determine the multiple relations through the usage of different appliances from simultaneous information flows. In comparison, specific relations among interval-based instances where multiple appliances use continue for certain duration are difficult to determine. In order to resolve these difficulties, an unsupervised energy time-series data clustering and a frequent pattern mining study as well as a deep learning technique for estimating energy use were presented. A broad test using true data sets that are rich in smart meter data were conducted. The exact results of the appliance designs that were recognized by the proposed model were filled out by Deep Convolutional Neural Networks (CNN) and Recurrent Neural Networks (LSTM and GRU) at each stage, with consolidated accuracy of 94.79%, 97.99%, 99.61%, for 25%, 50%, and 75%, respectively.

Deep learning-based automatic segmentation of the mandibular canal on panoramic radiographs: A multi-device study

  • Moe Thu Zar Aung;Sang-Heon Lim;Jiyong Han;Su Yang;Ju-Hee Kang;Jo-Eun Kim;Kyung-Hoe Huh;Won-Jin Yi;Min-Suk Heo;Sam-Sun Lee
    • Imaging Science in Dentistry
    • /
    • v.54 no.1
    • /
    • pp.81-91
    • /
    • 2024
  • Purpose: The objective of this study was to propose a deep-learning model for the detection of the mandibular canal on dental panoramic radiographs. Materials and Methods: A total of 2,100 panoramic radiographs (PANs) were collected from 3 different machines: RAYSCAN Alpha (n=700, PAN A), OP-100 (n=700, PAN B), and CS8100 (n=700, PAN C). Initially, an oral and maxillofacial radiologist coarsely annotated the mandibular canals. For deep learning analysis, convolutional neural networks (CNNs) utilizing U-Net architecture were employed for automated canal segmentation. Seven independent networks were trained using training sets representing all possible combinations of the 3 groups. These networks were then assessed using a hold-out test dataset. Results: Among the 7 networks evaluated, the network trained with all 3 available groups achieved an average precision of 90.6%, a recall of 87.4%, and a Dice similarity coefficient (DSC) of 88.9%. The 3 networks trained using each of the 3 possible 2-group combinations also demonstrated reliable performance for mandibular canal segmentation, as follows: 1) PAN A and B exhibited a mean DSC of 87.9%, 2) PAN A and C displayed a mean DSC of 87.8%, and 3) PAN B and C demonstrated a mean DSC of 88.4%. Conclusion: This multi-device study indicated that the examined CNN-based deep learning approach can achieve excellent canal segmentation performance, with a DSC exceeding 88%. Furthermore, the study highlighted the importance of considering the characteristics of panoramic radiographs when developing a robust deep-learning network, rather than depending solely on the size of the dataset.

PCB Defect Inspection using Deep Learning (딥러닝을 이용한 PCB 불량 검출)

  • Baek, Yeong-Tae;Sim, Jae-Gyu;Pak, Chan-Young;Lee, Se-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.325-326
    • /
    • 2018
  • 본 논문에서는 PCB 공정상의 육안검사를 통한 불량 분류 방식에서 CNN을 이용한 PCB 불량 분류 방식을 제안한다. 이 방식은 육안검사의 문제점인 작업자의 숙련도에 따른 검사 효율을 자동화 검사 시스템에 의해 해결하며, 불량 위치와 종류를 결과 이미지에 표시한다. 또한 이미지 분류 결과를 모니터링할 수 있도록 시리얼 통신을 통하여 Darknet 프레임워크와 LCD를 연동하였다. 적은 량의 데이터 셋으로도 좋은 결과를 냈으며, 다양한 데이터 셋을 이용해 훈련할 시 전반적인 PCB 불량의 분류가 가능할 것으로 예상된다.

  • PDF