• Title/Summary/Keyword: Deep Soil

Search Result 704, Processing Time 0.024 seconds

Distribution of Soil Components and Their Relationships in Different Soil Depths in Australian Upland Soil (Narayen Exp. sta., CSIRO) (호주(濠洲) Narayen 시험장(試驗場)(CSIRO) 포장토양(圃場土壤)의 심도별(深度度) 성분(成分) 분포(分布))

  • Ahn, Yoon Soo;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.2
    • /
    • pp.168-174
    • /
    • 1992
  • This study was carried out to find out the distribution of soil components and their relationships in layer of soil profiles under upland condition. Concentrations of nitrate, chloride, and that sort of thing in soil profiles were tested in a field covering $235m^2$ by core sampling down to 150cm depth. Total nitrogen contents in soil profiles progressively decreased in lower depths down to 150cm. Nitrate concentrations in deeper layers than 110cm, which revealed a similar distribution pattern with total nitrogen down to 110cm, increased with the depth lowering to 150cm, indicationg that nitrate has leached to deep layer. Natural abundance of $^{15}N$ in total nitrogen and nitrate in all the soil profiles showed higher values compared with the other general cultivated soils and trended to get higher in deeper layers. The horizontal variation of $^{15}N$ distribution in the field surveyed was not significant. Chloride concentrations and EC values in soil profiles increased with depth where nitrate was accmulated, and showed a highly positive correlation between them.

  • PDF

Estimation of Danger Zone by Soil Erosion Using RUSLE Model in Gyeongju National Park (RUSLE 모형을 이용한 경주국립공원의 토양침식 위험지역 추정)

  • Choi, Chul-Hyun;You, Ju-Han;Jung, Sung-Gwan
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.5
    • /
    • pp.614-624
    • /
    • 2013
  • The purpose of this study is to offer the raw data for establishing the plan of disaster prevention and the continuous conservation of soil ecosystem by grasping the potential soil loss and the danger of erosion using RUSLE method on whole districts in Gyeongju National Park, Korea. In the results of the average amount of soil erosion for the year, the average of all districts was 5.7 ton/ha in annual, and Namsan district was the highest in 7.6 ton/ha in annual and Seoak district was the lowest in 2.1 ton/ha in annual. The dangerous district due to the soil erosion was analyzed as under 1%, and Gumisan and Hwarange district was not serious. But Namsan district was higher than others, especially, there was intensive in all over Geumohbong. Therefore, to protect the all over Geumohbong, we will establish the valid of restoration and management. The types of land cover in Gyeongju National Park mostly showed forest, and as the average amount of soil erosion in forest was 3.7 ton/ha in annual, there was good condition. In the results of the amount of soil erosion due to landform, the deep canyon showed as 7.3 ton/ha in annual per unit area, secondly, the U-shaped valley was analyzed as 6.1 ton/ha in annual. The plain and high ridge were predicted that there occurred the small amount of soil erosion. In future, if we will analyze the amount of soil erosion in Korean National Parks, we will offer the help to establishing the plan of conservation and restoration on soil ecosystem in whole National Parks.

An Experimental Study on the Heave Characteristics of DCM Heaving Soil (DCM 부상토의 융기 특성에 대한 실험적 연구)

  • Eonsang Park;Seungdo Park
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.2
    • /
    • pp.5-12
    • /
    • 2023
  • In this study, the amount of heaving soil and the heave characteristics of the heaving soil generated at the actual site were quantitatively analyzed through DCM laboratory test construction. By reproducing a series of construction processes of the DCM method in a large-scale soil tank close to the actual site, the amount of heaving soil was predicted and the elevation characteristics such as elevation, diffusion range, diffusion angle and amount of elevation of the heaving soil were evaluated. As a result of the laboratory test construction, the actual elevation in terms of similarity within the DCM improvement section is 0~8.18m, and an average of 3.50m is observed. The actual diffusion range of the heaving soil converted to the similarity ratio is distributed from 28.0 to 38.0m on the left and right sides of the improvement section. The total amount of heaving soil calculated by the SUFFER program based on the results of the laboratory test construction is 19,901m3. Compared with the injected slurry amount of 16,992m3, the amount of heave compared to the injected amount is analyzed as 85.4%. The diffusion angle of DCM heaving soil, which analyzed the results of DCM laboratory test construction with the SUFFER program, is measured to be 30.0~38.0° at a depth of 50.0m, and is evaluated as an average of 34.0°. On the other hand, based on the DCM laboratory test construction and the analysis results using the program performed in this study, the amount of heaving soil at the DCM depths of 40.0m and 60.0m is predicted.

Moment Equations for Long-Span Soil-Steel Box Culverts (장지간 지중강판 박스컬버트의 휨모멘트 식)

  • Choi, Dong-Ho;Lee, Seung-Jae;Kim, Nam-Gi
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.55-68
    • /
    • 2006
  • This paper studies the moment equations in the 2000 Canadian highway bridge code(CHBDC) for soil-steel box structures, which are applicable to the span less than 8m. Finite element analyses carried out for soil-steel box structures having spans of 3-12m using the deep corrugated steel plates under three construction stages; backfill up to the crown, backfill up to the cover depth, and live loading. The coefficients of moment equations are newly proposed based on the results of numerous finite element analyses considering various design variables, such as span length, soil depth, backfill conditions. The validity of the proposed coefficients in the moment equations of the 2000 CHBDC is investigated by the comparison with the existing coefficients and numerical results of finite element analyses. The comparisons show that the moments of the 2000 CHBDC give good predictions for the span less than 8m, but underestimate for the span greater than 8m, whereas the proposed moments give good estimates of numerical results for the spans of 3-12m.

  • PDF

Relationship between early development of plant community and environmental condition in abandoned paddy terraces at mountainous valleys in Korea

  • Park, Jihyun;Hong, Mun-Gi;Kim, Jae Geun
    • Journal of Ecology and Environment
    • /
    • v.36 no.2
    • /
    • pp.131-140
    • /
    • 2013
  • In Korea, many paddy fields in mountainous area have been abandoned because of their low accessibility and rice price and the abandoned paddy terraces have changed into natural lentic wetlands. To understand the relationship between characteristics of environmental conditions and early development of plant community in abandoned paddy terraces, we investigated at four well-maintained abandoned paddy terraces in 3 different climatic zones in Korea. Soil texture of abandoned paddy terraces was mostly kinds of loam and electric conductivity of soil was also similar among abandoned paddy terraces. On the other hand, contents of nitrogen, phosphorus, potassium, sodium, magnesium, and calcium in soil were relatively low and significantly different among abandoned paddy terraces. Water depth was different within sites and inter-sites. Although environmental conditions including climate, soil condition and water depth were different among abandoned paddy terraces, the compositions of plant communities were relatively similar in all abandoned paddy terraces. 55 dominant taxa out of 141 recorded species were commonly recorded over sites and they were mostly perennial obligate wetland plants and facultative wetland plants. 8 taxa out of 55 dominant taxa occurred at all abandoned paddy terraces with over 10% coverage. Several site-specific species occurred at site, which have some area with deep water level. This result indicates that early development of plant community in abandoned paddy terraces of similar water regime is similar in the entire area of Korea even though environmental conditions such as climate, biogeographic history and soil are different.

Experimental Study on Hydraulic Resistance of Sea Ground Considering Tidal Current Flow (왕복류 흐름을 고려한 지반의 수리저항성능 실험)

  • Kim, Young-Sang;Gang, Gyeong-O
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.118-125
    • /
    • 2011
  • Conventional erosion function apparatus (EFA) which has been used to measure the hydraulic resistance of soil was improved to consider direction change of the current flow. Using improved apparatus, hydraulic resistance capacities of the artificially composed clayey soil and sandy soil were compared. Test result shows that scour rates which were measured under the bi-directional flow were much higher than those measured under unidirectional flow for both type soils. Scour rate of sandy soil was higher than that of clayey soil. Velocity averaged scour rate of specimen which was consolidated under the relatively large consolidation pressure is higher than that of specimen which is consolidated under small consolidation pressure, which means scour problem under bidirectional flow may be more serious for the deep seabed ground.

Study on the Desalinization in Tiolal Land (간석지 제람에 관한 연구)

  • 이중기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.2
    • /
    • pp.4695-4707
    • /
    • 1978
  • The objeative of this study is to study how to rapidly convert tidal land into cultivable land. The study of a rapid, reasonable desalinization method is conducted at Namyang tidal land which represents soil texture of tidal lands along the south west costa larea of Korea. Therefore, Researches were made at many Pilots in order to find a way of high efficiency of leaching with simpler facilities and cheaper costs. The results of study are briefly summarized as follaws: 1. Subdrainage efficieny is 35%. This is a Poorly drained area, and needs longer leaching desalinization period. 2. The efficieny of desalinization in P.V.C 16 meters plot is the same as that of mole drainage 2 meters plot. P.V.C 4 meters plot has desalinization effect as much as two times compared to P.V.C 16 meters plot. 3. Because the soil texture is silty-clay, desalinization in non-treated plot of sub-drainage and surface drainage desalinization take three times longer period in comparision with P.V.C 4 meters plot. 4. As to the desalinization rate of soluble salt in the soil, the efficieny of desalinization of the topsoil in P.V.C plots was 50% higher than that of mole drainage plot and about 170% higher than that of non-treated plot. In the deep soil salt accumulation at topsoil was observed in non-treated and mole drainage plots, but efficiency in P.V.C polt is about 40 times as high as that of mole drainage and non-treated plot. 5. As to the results of use gypsum and lime as sub-drainage soil improver, gypsum was 60% more efficieny than lime in the continuously inundated plot and 44% in the intermittently inundated plot. The efficieny of gypsum and lime in the intermittently flooded plot is 35% and 42% higher than that of continuously flooded plot reapeaticee1y.

  • PDF

The Optimum Irrigation Level and the Project Water Requirement for Upland Crops (밭 작물의 최적관개수준과 계획용수량 산정)

  • 윤학기;정상옥;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.32 no.1
    • /
    • pp.72-86
    • /
    • 1990
  • This study was carried out to get the basic information of irrigation plans for upland crops such as the optimum irrigation level and the project water requirement. Red peppers and cucumbers were cultivated in PVC pot lysimeters filled with 60cm deep clay loam soil. Four tensiometers were installed in each pot to measure the soil water pressure head. Six levels of irrigation were used. The results obtained from this study are summarized as follows: 1.The optimum irrigation level. The irrigation level of FC-PF2.7 was found to be the optimum level for both red pepper and cucumber with respect to the yield and the weight per fruit. In case of FC-PF2.7, total ET during the irrigation period were 1005.2mm for red pepper, and 429.6mm for cucumber, respectively. 2.soil moisture extraction patterns. Average soil moisture extraction patterns (SMEP)during the irrigation period were from 1st soil layer 43% : 32% : 16% : 9% for red pepper and 39% : 34% : 15% : 12% for cucumber, respectively. The extraction ratio of the upper soils showed very large values during the early stage of growth and decreased largely during the middle stage, and became larger in the last stage. 3.The project water requirement. Among the reference crop evapotranspiration(ETo) computation methods presented by FAO, the Penman method was found to be the best. The effective rainfall was computed by a modified USDA-SCS curve number equation. Availability ratios of the total rainfall during irrigation season were 59.2% for red pepper and 48.9% for cucumber, respectively. Net project water requirement of design year are 837.3mm for red pepper. and 502.Smm for cucumber, respectively.

  • PDF

Vegetation Structure of the Kungae Reclaimed Wetland in a Coastal Lagoon of East Sea, Korea (동해안 석호에서 군개 간척습지의 식생 구조)

  • Kim, Ja-Ae;Jo, Gang-Hyeon;Lee, Hyo-Hye-Mi
    • The Korean Journal of Ecology
    • /
    • v.24 no.1
    • /
    • pp.27-34
    • /
    • 2001
  • We described the vegetation of a disturbed lagoon wetland in relation to water and soil environments in Kungae lagoon reclaimed 30 years ago. Water depth and soil organic matter showed a great spatial heterogeneity in Kungae wetland which was changed into a freshwater marsh by the dike construction. Detrended canonical correspondence analysis suggested that differences in vegetation structure were primarily the result of variation in water depth or microtopography and soil organic matter Various emergent vegetations were developed in the wetland: species such as Phragmites australis, Calamagrostis epigeios, Carex dispalata and Lythrum anceps in a wide area, hydrophyes such as Typha angustifolia and Scirpus tabernaemontani at the low elevation with deep water, ruderals such as Bidens frondosa and Persicaria perfoliata near upland with much soil organic matter and sand-dune vegetation such as Carex kobomugi, Diodia tens, Pinus thunbergii and Potentilla egedei var. groenlandica at the high elevation. These results suggest that development of a prototype for wetland restoration from vegetation analysis of other natural lagoons and restoration of natural water tables and hydrologic connections between the diked wetland and the sea are important in the disturbed Kungae wetland.

  • PDF

Characterization of Ferrallitique Soils (Ferrallitique토양(土壤)의 특성(特性)에 관(關)한 연구(硏究))

  • Sin, Cheon-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.3
    • /
    • pp.260-264
    • /
    • 1985
  • Ferrallitique soils are real tropical soils, with an oxic B horizon such a horizon is at least 30cm thick, has > 15% clay, diffuse horizon boundaries, no weatherable minerals and a CEC of clay < 16 me per 100g. These soils are in general the real reddish or yellowish very uniform tropical clay soils with an orchric A horizon and a deep B horizon, otherwise almost characterless. The soil profile looks uniform and maybe some metres thick. It is well drained, has a good permeability and a stable structure. As there is little or no weatherable mineral, because these soils are old and exhausted of bares, natural fertility is very low. There has been a complicated process of soil formation. Intensive and continuous weathering over a very long period has resulted in leaching of bases and silica, in relative accumulation of resquioxides and in formation of kaolinitic clay. Until recently, there has been much confusion in classifing and naming tropical soils. Particularily what are now Ferralsols in the FAO scheme, and Oxisols in Soil Taxonomy. Old names of various classification system are: Lateritic soils, Latosols, Ferrallitic soils. For agriculture, these soils are important, but chemically very poor, not only because of a low CEC but also because of deficiency of bases, especially Ca, Mg, and K, strong P fixation and high exchangeable Al percentage.

  • PDF