• Title/Summary/Keyword: Deep Reinforcement Learning

검색결과 205건 처리시간 0.028초

Aspect-based Sentiment Analysis of Product Reviews using Multi-agent Deep Reinforcement Learning

  • M. Sivakumar;Srinivasulu Reddy Uyyala
    • Asia pacific journal of information systems
    • /
    • 제32권2호
    • /
    • pp.226-248
    • /
    • 2022
  • The existing model for sentiment analysis of product reviews learned from past data and new data was labeled based on training. But new data was never used by the existing system for making a decision. The proposed Aspect-based multi-agent Deep Reinforcement learning Sentiment Analysis (ADRSA) model learned from its very first data without the help of any training dataset and labeled a sentence with aspect category and sentiment polarity. It keeps on learning from the new data and updates its knowledge for improving its intelligence. The decision of the proposed system changed over time based on the new data. So, the accuracy of the sentiment analysis using deep reinforcement learning was improved over supervised learning and unsupervised learning methods. Hence, the sentiments of premium customers on a particular site can be explored to other customers effectively. A dynamic environment with a strong knowledge base can help the system to remember the sentences and usage State Action Reward State Action (SARSA) algorithm with Bidirectional Encoder Representations from Transformers (BERT) model improved the performance of the proposed system in terms of accuracy when compared to the state of art methods.

A Study on Deep Reinforcement Learning Framework for DME Pulse Design

  • Lee, Jungyeon;Kim, Euiho
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권2호
    • /
    • pp.113-120
    • /
    • 2021
  • The Distance Measuring Equipment (DME) is a ground-based aircraft navigation system and is considered as an infrastructure that ensures resilient aircraft navigation capability during the event of a Global Navigation Satellite System (GNSS) outage. The main problem of DME as a GNSS back up is a poor positioning accuracy that often reaches over 100 m. In this paper, a novel approach of applying deep reinforcement learning to a DME pulse design is introduced to improve the DME distance measuring accuracy. This method is designed to develop multipath-resistant DME pulses that comply with current DME specifications. In the research, a Markov Decision Process (MDP) for DME pulse design is set using pulse shape requirements and a timing error. Based on the designed MDP, we created an Environment called PulseEnv, which allows the agent representing a DME pulse shape to explore continuous space using the Soft Actor Critical (SAC) reinforcement learning algorithm.

Visual Analysis of Deep Q-network

  • Seng, Dewen;Zhang, Jiaming;Shi, Xiaoying
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권3호
    • /
    • pp.853-873
    • /
    • 2021
  • In recent years, deep reinforcement learning (DRL) models are enjoying great interest as their success in a variety of challenging tasks. Deep Q-Network (DQN) is a widely used deep reinforcement learning model, which trains an intelligent agent that executes optimal actions while interacting with an environment. This model is well known for its ability to surpass skilled human players across many Atari 2600 games. Although DQN has achieved excellent performance in practice, there lacks a clear understanding of why the model works. In this paper, we present a visual analytics system for understanding deep Q-network in a non-blind matter. Based on the stored data generated from the training and testing process, four coordinated views are designed to expose the internal execution mechanism of DQN from different perspectives. We report the system performance and demonstrate its effectiveness through two case studies. By using our system, users can learn the relationship between states and Q-values, the function of convolutional layers, the strategies learned by DQN and the rationality of decisions made by the agent.

수중운동체의 롤 제어를 위한 Deep Deterministic Policy Gradient 기반 강화학습 (Reinforcement Learning based on Deep Deterministic Policy Gradient for Roll Control of Underwater Vehicle)

  • 김수용;황연걸;문성웅
    • 한국군사과학기술학회지
    • /
    • 제24권5호
    • /
    • pp.558-568
    • /
    • 2021
  • The existing underwater vehicle controller design is applied by linearizing the nonlinear dynamics model to a specific motion section. Since the linear controller has unstable control performance in a transient state, various studies have been conducted to overcome this problem. Recently, there have been studies to improve the control performance in the transient state by using reinforcement learning. Reinforcement learning can be largely divided into value-based reinforcement learning and policy-based reinforcement learning. In this paper, we propose the roll controller of underwater vehicle based on Deep Deterministic Policy Gradient(DDPG) that learns the control policy and can show stable control performance in various situations and environments. The performance of the proposed DDPG based roll controller was verified through simulation and compared with the existing PID and DQN with Normalized Advantage Functions based roll controllers.

A3C 기반의 강화학습을 사용한 DASH 시스템 (A DASH System Using the A3C-based Deep Reinforcement Learning)

  • 최민제;임경식
    • 대한임베디드공학회논문지
    • /
    • 제17권5호
    • /
    • pp.297-307
    • /
    • 2022
  • The simple procedural segment selection algorithm commonly used in Dynamic Adaptive Streaming over HTTP (DASH) reveals severe weakness to provide high-quality streaming services in the integrated mobile networks of various wired and wireless links. A major issue could be how to properly cope with dynamically changing underlying network conditions. The key to meet it should be to make the segment selection algorithm much more adaptive to fluctuation of network traffics. This paper presents a system architecture that replaces the existing procedural segment selection algorithm with a deep reinforcement learning algorithm based on the Asynchronous Advantage Actor-Critic (A3C). The distributed A3C-based deep learning server is designed and implemented to allow multiple clients in different network conditions to stream videos simultaneously, collect learning data quickly, and learn asynchronously, resulting in greatly improved learning speed as the number of video clients increases. The performance analysis shows that the proposed algorithm outperforms both the conventional DASH algorithm and the Deep Q-Network algorithm in terms of the user's quality of experience and the speed of deep learning.

Deep Q-Network를 이용한 준능동 제어알고리즘 개발 (Development of Semi-Active Control Algorithm Using Deep Q-Network)

  • 김현수;강주원
    • 한국공간구조학회논문집
    • /
    • 제21권1호
    • /
    • pp.79-86
    • /
    • 2021
  • Control performance of a smart tuned mass damper (TMD) mainly depends on control algorithms. A lot of control strategies have been proposed for semi-active control devices. Recently, machine learning begins to be applied to development of vibration control algorithm. In this study, a reinforcement learning among machine learning techniques was employed to develop a semi-active control algorithm for a smart TMD. The smart TMD was composed of magnetorheological damper in this study. For this purpose, an 11-story building structure with a smart TMD was selected to construct a reinforcement learning environment. A time history analysis of the example structure subject to earthquake excitation was conducted in the reinforcement learning procedure. Deep Q-network (DQN) among various reinforcement learning algorithms was used to make a learning agent. The command voltage sent to the MR damper is determined by the action produced by the DQN. Parametric studies on hyper-parameters of DQN were performed by numerical simulations. After appropriate training iteration of the DQN model with proper hyper-parameters, the DQN model for control of seismic responses of the example structure with smart TMD was developed. The developed DQN model can effectively control smart TMD to reduce seismic responses of the example structure.

Cloud Task Scheduling Based on Proximal Policy Optimization Algorithm for Lowering Energy Consumption of Data Center

  • Yang, Yongquan;He, Cuihua;Yin, Bo;Wei, Zhiqiang;Hong, Bowei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권6호
    • /
    • pp.1877-1891
    • /
    • 2022
  • As a part of cloud computing technology, algorithms for cloud task scheduling place an important influence on the area of cloud computing in data centers. In our earlier work, we proposed DeepEnergyJS, which was designed based on the original version of the policy gradient and reinforcement learning algorithm. We verified its effectiveness through simulation experiments. In this study, we used the Proximal Policy Optimization (PPO) algorithm to update DeepEnergyJS to DeepEnergyJSV2.0. First, we verify the convergence of the PPO algorithm on the dataset of Alibaba Cluster Data V2018. Then we contrast it with reinforcement learning algorithm in terms of convergence rate, converged value, and stability. The results indicate that PPO performed better in training and test data sets compared with reinforcement learning algorithm, as well as other general heuristic algorithms, such as First Fit, Random, and Tetris. DeepEnergyJSV2.0 achieves better energy efficiency than DeepEnergyJS by about 7.814%.

산업용 사물 인터넷을 위한 프라이버시 보존 연합학습 기반 심층 강화학습 모델 (Federated Deep Reinforcement Learning Based on Privacy Preserving for Industrial Internet of Things)

  • 한채림;이선진;이일구
    • 정보보호학회논문지
    • /
    • 제33권6호
    • /
    • pp.1055-1065
    • /
    • 2023
  • 최근 사물 인터넷을 활용한 산업 현장에서 수집되는 빅데이터를 활용해 복잡한 문제들을 해결하기 위하여 심층 강화학습 기술을 적용한 다양한 연구들이 이루어지고 있다. 심층 강화학습은 강화 학습의 시행 착오 알고리즘과 보상의 누적값을 이용해 자체 데이터를 생성하여 학습하고 신경망 구조와 파라미터 결정을 빠르게 탐색한다. 그러나 종래 방법은 학습 데이터의 크기가 커질수록 메모리 사용량과 탐색 시간이 기하급수적으로 높아지며 정확도가 떨어진다. 본 연구에서는 메타 학습을 적용한 연합학습 기반의 심층 강화학습 모델을 활용하여 55.9%만큼 보안성을 개선함으로써 프라이버시 침해 문제를 해결하고, 종래 최적화 기반 메타 학습 모델 대비 5.5% 향상된 97.8%의 분류 정확도를 달성하면서 평균 28.9%의 지연시간을 단축하였다.

ROV Manipulation from Observation and Exploration using Deep Reinforcement Learning

  • Jadhav, Yashashree Rajendra;Moon, Yong Seon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권3호
    • /
    • pp.136-148
    • /
    • 2017
  • The paper presents dual arm ROV manipulation using deep reinforcement learning. The purpose of this underwater manipulator is to investigate and excavate natural resources in ocean, finding lost aircraft blackboxes and for performing other extremely dangerous tasks without endangering humans. This research work emphasizes on a self-learning approach using Deep Reinforcement Learning (DRL). DRL technique allows ROV to learn the policy of performing manipulation task directly, from raw image data. Our proposed architecture maps the visual inputs (images) to control actions (output) and get reward after each action, which allows an agent to learn manipulation skill through trial and error method. We have trained our network in simulation. The raw images and rewards are directly provided by our simple Lua simulator. Our simulator achieve accuracy by considering underwater dynamic environmental conditions. Major goal of this research is to provide a smart self-learning way to achieve manipulation in highly dynamic underwater environment. The results showed that a dual robotic arm trained for a 3DOF movement successfully achieved target reaching task in a 2D space by considering real environmental factor.

심층 강화학습 기반의 선박 항로계획 수립 (Generation of ship's passage plan based on deep reinforcement learning)

  • 이형탁;양현;조익순
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2023년도 추계학술대회
    • /
    • pp.230-231
    • /
    • 2023
  • 본 연구는 선박의 항해계획을 자동으로 수립하기 위한 심층 강화학습 기반 알고리즘을 제안한다. 먼저 부산항과 광양항을 대상지역으로 선정하고, 대상 선박으로 흘수 16m의 컨테이너선을 지정하였다. 실험 결과는 심층 강화학습을 사용하여 수립한 항해계획이 선행연구에서 활용한 Q-learning기반의 알고리즘보다 더 효율적인 것으로 분석되었다. 본 알고리즘은 선박의 항해계획을 자동으로 수립하는 방법을 제시하며, 해상 안전 및 효율성 향상에 기여할 수 있다.

  • PDF