• Title/Summary/Keyword: Deep Rectangular Case

Search Result 17, Processing Time 0.032 seconds

A Study on Initial Blank Design and Modification for Rectangular Case Forming with Extreme Aspect Ratio (세장비가 큰 사각케이스 성형을 위한 초기 블랭크의 설계 및 개선에 관한 연구)

  • 구태완;박철성;강범수
    • Transactions of Materials Processing
    • /
    • v.13 no.4
    • /
    • pp.307-318
    • /
    • 2004
  • Rectangular drawn case with extreme aspect ratio is widely used for electrical parts such as a lithium-ion battery container, semi-conductor case and so on. Additionally, from the recent trend towards miniaturization of the multi-functional mobile device, demands for rectangular case with the narrow width are increased. In this study, numerical and experimental approaches for the multi-stage deep drawing process have been carried out. Based on the research results of the width of 5.95mm model, finite element analysis for storage case of rectangular cup type was verified to the width of 4.95mm. Also, a series of manufacturing experiments for rectangular case is conducted and the deformed configuration of the rectangular drawn case are investigated by comparing with the results of the numerical analysis. And the modification of the initial blank is performed to minimize the trimmed material amount. By the application of the modified blank, the sound shape of the deformed parts is improved.

Process Design for Deep Drawing of High Precision Rectangular Battery Case used in Cellular Phone (휴대폰용 초정밀 사각 밧데리 케이스의 ???K드로잉 공정설계)

  • Kim H. J.;Ku T. W.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.97-100
    • /
    • 2000
  • Today deep drawing and ironing are the major process in manufacturing of battery case used in cellular phone from aluminum. The same technology is utilized in manufacturing of steel or aluminum cans for components of medical instrument, portable PC, walkman and so on. Most of these processes require multi-stage ironing following the deep drawing and redrawing processes. The practical aspects of this technology are well known and gained through extensive experiment and production know-how. However, the fundamental aspects of theses processes are relatively less known. Thus, it is expected that process simulations using FEM techniques would provide additional detailed information that could be utilized to improve the process condition. This paper illustrates the application of process modeling to deep drawing and redrawing operations for High Precision Rectangular Battery Case. A commercially avaliable finite element code LS-DYNA3D was used to simulate deep drawing and redrawing operations.

  • PDF

Experiments on the flange wrinkling for a deep-drawn rectangular container (사각용기 드로잉시의 플랜지 주름에 관한 실험)

  • 이계섭;이기환;박천희;한영호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.123-127
    • /
    • 1996
  • The tendency of wrinkling formation on the flange of a deep-drawn rectangular container was investigated experimentally under different process conditions. Such process variables as blank size, sheet thickness, blank-holding force, and depth of drawing are chosen to examine their effects on the flange wrinkles of the products. Number and amplitudes of the wrinkles are measured along the periphery of the flange and compared between each case of process condition.

  • PDF

Finite Element Analysis of Multi-Stage Deep Drawing Process for High Precision Rectangular Case with Extreme Aspect Ratio (세장비가 큰 사각컵 디프 드로잉의 유한요소 해석)

  • Ku T.W.;Ha B.K.;Song W.J.;Kang B.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.274-284
    • /
    • 2002
  • Deep drawing process for rectangular drawn section is different with that for axisymmetric circular one. Therefore deep drawing process for rectangular drawn section requires several intermediate steps to generate the final configuration without any significant defect. In this study, finite element analysis for multi-stage deep drawing process for high precision rectangular cases is carried out especially for an extreme aspect ratio. The analysis is performed using rigid-plastic finite element method with an explicit time integration scheme of the commercial program, LS-DYNA3D. The sheet blank is modeled using eight-node continuum brick elements. The results of analysis show that the irregular contact condition between blank and die affects the occurrence of failure, and the difference of aspect ratio in the drawn section leads to non-uniform metal flow, which may cause failure. A series of experiments for multi-stage deep drawing process for the rectangular cases are conducted, and the deformation configuration and the thickness distribution of the drawn rectangular cases are investigated by comparing with the results of the numerical analysis. The numerical analysis with an explicit time integration scheme shows good agreement with the experimental observation.

  • PDF

FE Analysis of The Forming Process of The High Precision Rectangular Battery Case used in Cellular Phone and IMT-2000 (Cellular Phone 및 IMT-2000용 초정밀 사각 밧데리 케이스 성형공정 해석)

  • Kim, H.J.;Ku, T.W.;Kang, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.778-782
    • /
    • 2000
  • Deep drawing and ironing are the major process used today in manufacturing of battery case used in cellular phone and IMT-2000 from aluminum. The same technology is utilized in manufacturing of steel or aluminum rectangular cans for components of medical instrument, portable PC, walkman and so on. Most of these processes require multi-stage ironing following the deep drawing and redrawing processes. The practical aspects of this technology are well known and gained through extensive experiment and production know-how. However, the fundamental aspects of theses processes are relatively less known. Thus, it is expected that process simulations using FEM techniques would provide additional detailed information that could be utilized to improve the process condition. This paper illustrates the application of process modeling to deep drawing and redrawing operations with the cellular phone and IMT-2000. A commercially avaliable finite element code LS-DYNA3D was used to simulate deep drawing and redrawing operations.

  • PDF

FE Analysis and Die Design of The Multi-stage Rectangular Deep Drawing Process with the Large Aspect Ratio (세장비가 큰 다단계 사각형 디프드로잉 성형공정해석 및 금형설)

  • 김홍주;구태완;강범수
    • Transactions of Materials Processing
    • /
    • v.10 no.6
    • /
    • pp.456-464
    • /
    • 2001
  • Deep drawing and ironing are tile major process today in manufacturing of aluminum alloy battery case used in cellular phone. Most of these process require multi-stage ironing following the deep drawing and redrawing processes. The practical aspects of this technology are well known and gained through extensive experiment and production know-how. However, the fundamental aspects of these processes are relatively less known. Thus, it is expected that process analysis using FEM techniques would provide additional detailed information that could be utilized to improve the process condition. This paper illustrates the application of process modeling to deep drawing and redrawing operations. To verify the simulation results, the experimental investigations were also carried out on a real industrial product. The numerical analysis by FEM shows good agreement with the experimental results in view of the deformation shape of the product. A commercially available finite element code LS-DYNA3D was used to simulate deep drawing and redrawing operations.

  • PDF

Effect of Process Parameters on Rectangular Cup Impact Extrusion of an AA1070 Aluminum Alloy (AA1070 알루미늄 합금의 사각형상 충격압출 성형에 미치는 공정 조건의 영향)

  • Jo, M.K.;An, E.;Park, I.W.;Song, I.S.;Kim, H. Y.;Kim, D.;Moon, Y.H.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.323-331
    • /
    • 2015
  • Impact extrusion is an economical and productive process that can replace the multistage deep drawing process for producing deep rectangular cases. In the current work, a three-dimensional finite element analysis of the impact extrusion process of a commercial purity aluminum alloy (AA1070) was performed to predict loads, material flow, and deformed shapes using the Hansel-Spittel rheology law, which describes the flow stress at various temperatures and strain rates. The role of various process parameters such as friction, clearance between punch and die, aspect ratio and thickness of billet on the process and the shapes was analyzed.

A Development of Optimal Design Model for Initial Blank Shape Using Artificial Neural Network in Rectangular Case Forming with Large Aspect Ratio (세장비가 큰 사각케이스 성형 공정에서의 인공신경망을 적용한 초기 블랭크 형상 최적설계 모델 개발)

  • Kwak, M.J.;Park, J.W.;Park, K.T.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.5
    • /
    • pp.272-281
    • /
    • 2020
  • As the thickness of mobile communication devices is getting thinner, the size of the internal parts is also getting smaller. Among them, the battery case requires a high-level deep drawing technique because it has a rectangular shape with a large aspect ratio. In this study, the initial blank shape was optimized to minimize earing in a multi-stage deep drawing process using an artificial neural network(ANN). There has been no reported case of applying artificial neural network technology to the initial blank optimal design for a square case with large aspect ratio. The training data for ANN were obtained though simulation, and the model reliability was verified by performing comparative study with regression model using random sample test and goodness-of-fit test. Finally, the optimal design of the initial blank shape was performed through the verified ANN model.

Catch fluctuation of the rectangular set net according to the tide age in the coastal waters of Jeju (제주연안 각망의 조석에 의한 어획량 변동)

  • Lee, Chang-Heon;Choi, Chan-Moon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.2
    • /
    • pp.112-119
    • /
    • 2008
  • The fundamental data on the catch fluctuation in the rectangular set net according to the tide age were developed based on the catches recorded from the year 1986 to 2004 in the coastal waters of Hamdeok, Jeju. Total catch by the rectangular set net had a deep connection with the tide age. In particular, during increasing tide, total catch were reduced gradually from the neap tide to the high tide. As it turned out, the slope of total catch declined by degree and showed a correlation coefficient of determination of 0.76. On the contrary, in the case of decreasing tide, there was little sign of rise in total catch. In particular, large catch seemed to occur at the next tide to the neap tide. In the relation between the catch and the tide age, the level of the correlation coefficient chosen at $p{\leq}0.05$ decreased in the order rabbitfish(-0.84) and horse mackerel(-0.71), while the significance of other dominant species were not selected.

Initial Blank Optimization Design of Square Can Multistage Drawing considering Formability and Product Shape (사각형 캔 드로잉 다단 공정에서 성형성과 제품형상을 동시에 고려한 초기 블랭크 형상 최적 설계)

  • Park, Sang-Min;Kim, Dong Kyu;Hong, Seokmoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.320-326
    • /
    • 2017
  • Multistage deep-drawing technology is used widely in the production of mobile phone battery cases to improve productivity and economy. To ensure adequate capacity and rigidity, such cases are fabricated as a rectangular cup with a high slender ratio. The multistage deep-drawing of a rectangular cup entails a high slender ratio, and the heights of the product sides may be non-uniform because of the complicated deformation mechanisms. This causes problems in product assembly that affects the surface quality of the case. This study examined a blank shape that minimizes the height variations of the product to resolve the aforementioned problems. Optimization design and analysis were performed to identify the shape that yields the least variation. The long and short sides of an oval blank were set as the design variables. The objective function was set to yield the lowest height difference, and the thickness reduction rate of the product was set to the target range. In addition, the height of the final shape was set as a constraint. The height difference was minimized successfully using the optimized design. The design process of the initial blank for all rectangular shapes can be automated in the future.