• 제목/요약/키워드: Deep Neural Network Technology

검색결과 705건 처리시간 0.037초

Deep Recurrent Neural Network for Multiple Time Slot Frequency Spectrum Predictions of Cognitive Radio

  • Tang, Zhi-ling;Li, Si-min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권6호
    • /
    • pp.3029-3045
    • /
    • 2017
  • The main processes of a cognitive radio system include spectrum sensing, spectrum decision, spectrum sharing, and spectrum conversion. Experimental results show that these stages introduce a time delay that affects the spectrum sensing accuracy, reducing its efficiency. To reduce the time delay, the frequency spectrum prediction was proposed to alleviate the burden on the spectrum sensing. In this paper, the deep recurrent neural network (DRNN) was proposed to predict the spectrum of multiple time slots, since the existing methods only predict the spectrum of one time slot. The continuous state of a channel is divided into a many time slots, forming a time series of the channel state. Since there are more hidden layers in the DRNN than in the RNN, the DRNN has fading memory in its bottom layer as well as in the past input. In addition, the extended Kalman filter was used to train the DRNN, which overcomes the problem of slow convergence and the vanishing gradient of the gradient descent method. The spectrum prediction based on the DRNN was verified with a WiFi signal, and the error of the prediction was analyzed. The simulation results proved that the multiple slot spectrum prediction improved the spectrum efficiency and reduced the energy consumption of spectrum sensing.

Automatic melody extraction algorithm using a convolutional neural network

  • Lee, Jongseol;Jang, Dalwon;Yoon, Kyoungro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.6038-6053
    • /
    • 2017
  • In this study, we propose an automatic melody extraction algorithm using deep learning. In this algorithm, feature images, generated using the energy of frequency band, are extracted from polyphonic audio files and a deep learning technique, a convolutional neural network (CNN), is applied on the feature images. In the training data, a short frame of polyphonic music is labeled as a musical note and a classifier based on CNN is learned in order to determine a pitch value of a short frame of audio signal. We want to build a novel structure of melody extraction, thus the proposed algorithm has a simple structure and instead of using various signal processing techniques for melody extraction, we use only a CNN to find a melody from a polyphonic audio. Despite of simple structure, the promising results are obtained in the experiments. Compared with state-of-the-art algorithms, the proposed algorithm did not give the best result, but comparable results were obtained and we believe they could be improved with the appropriate training data. In this paper, melody extraction and the proposed algorithm are introduced first, and the proposed algorithm is then further explained in detail. Finally, we present our experiment and the comparison of results follows.

기계학습을 활용한 도로비탈면관리시스템 데이터 품질강화에 관한 연구 (The Study for Improvement of Data-Quality of Cut-Slope Management System Using Machine Learning)

  • 이세혁;김승현;우용훈;문재필;양인철
    • 지질공학
    • /
    • 제31권1호
    • /
    • pp.31-42
    • /
    • 2021
  • 도로비탈면관리시스템(Cut-Slope Management System, CSMS)은 전국 일반국도 비탈면에 대해 기초·정밀 조사를 바탕으로 데이터베이스를 구축해왔다. 그런데 이러한 데이터는 사람에 의해 기록되기 때문에 데이터 누락 및 오기입 문제가 발생할 수밖에 없다. 본 연구에서는 데이터의 불완전성 문제를 극복하기 위해 여러 머신러닝 기반의 예측모델들을 개발하고 이를 이용한 데이터 품질 강화 가능성을 검토하고자 하였다. 우선 다 범주 문자형 데이터를 수치화하는 과정을 수행하였고, 선정된 데이터 항목들에 대해 다항 로지스틱 회귀분석(Multinomial Logistic Regression)과 심층신경망(Deep-Neural-Network) 기반의 예측모델들을 개발하였다. 그 결과, 심층신경망 모델들의 정확도가 월등히 높은 것으로 나타났다. 향후 개발된 모델들을 활용하여 누락 및 오기입 데이터의 보완이 가능할 것으로 기대된다.

Design of a Neural Chip for Classifying Iris Flowers based on CMOS Analog Neurons

  • Choi, Yoon-Jin;Lee, Eun-Min;Jeong, Hang-Geun
    • 센서학회지
    • /
    • 제28권5호
    • /
    • pp.284-288
    • /
    • 2019
  • A calibration-free analog neuron circuit is proposed as a viable alternative to the power hungry digital neuron in implementing a deep neural network. The conventional analog neuron requires calibrations because a voltage-mode link is used between the soma and the synapse, which results in significant uncertainty in terms of current mapping. In this work, a current-mode link is used to establish a robust link between the soma and the synapse against the variations in the process and interconnection impedances. The increased hardware owing to the adoption of the current-mode link is estimated to be manageable because the number of neurons in each layer of the neural network is typically bounded. To demonstrate the utility of the proposed analog neuron, a simple neural network with $4{\times}7{\times}3$ architecture has been designed for classifying iris flowers. The chip is now under fabrication in 0.35 mm CMOS technology. Thus, the proposed true current-mode analog neuron can be a practical option in realizing power-efficient neural networks for edge computing.

멀티 파티 시스템에서 딥러닝을 위한 프라이버시 보존 기술 (Privacy Preserving Techniques for Deep Learning in Multi-Party System)

  • 고혜경
    • 문화기술의 융합
    • /
    • 제9권3호
    • /
    • pp.647-654
    • /
    • 2023
  • 딥러닝은 이미지, 텍스트와 같이 복잡한 데이터를 분류 및 인식하는데 유용한 방법으로 딥러닝 기법의 정확도는 딥러닝이 인터넷상의 AI 기반의 서비스를 유용하게 하는데 기초가 되었다. 그러나 딥러닝에서 훈련에 사용되는 방대한 양의 사용자 데이터는 사생활 침해 문제를 야기하였고 사진이나 보이스와 같이 사용자이 개인적이고 민감한 데이터를 수집한 기업들이 데이터들을 무기한으로 소유한다. 사용자들은 자신의 데이터를 삭제할 수 없고 사용되는 목적도 제한할 수 없다. 예를 들면, 환자 진료기록에 대한 딥러닝 기술을 적용하기 원하는 의료기관들과 같은 데이터소유자들은 사생활과 기밀유지 문제로 환자의 데이터를 공유할 수 없고 딥러닝 기술의 혜택을 받기 어렵다. 우리는 멀티 파티 시스템에서 다수의 작업자들이 입력 데이터집합을 공유하지 않고 신경망 모델을 공동으로 사용할 수 있는 프라이버시 보존 기술을 적용한 딥러닝 방법을 설계한다. 변형된 확률적 경사 하강에 기초한 최적화 알고리즘을 이용하여 하위 집합을 선택적으로 공유할 수 있는 방법을 이용하였고 결과적으로 개인정보를 보호하면서 학습 정확도를 증가시킨 학습을 할 수 있도록 하였다.

Physics informed neural networks for surrogate modeling of accidental scenarios in nuclear power plants

  • Federico Antonello;Jacopo Buongiorno;Enrico Zio
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3409-3416
    • /
    • 2023
  • Licensing the next-generation of nuclear reactor designs requires extensive use of Modeling and Simulation (M&S) to investigate system response to many operational conditions, identify possible accidental scenarios and predict their evolution to undesirable consequences that are to be prevented or mitigated via the deployment of adequate safety barriers. Deep Learning (DL) and Artificial Intelligence (AI) can support M&S computationally by providing surrogates of the complex multi-physics high-fidelity models used for design. However, DL and AI are, generally, low-fidelity 'black-box' models that do not assure any structure based on physical laws and constraints, and may, thus, lack interpretability and accuracy of the results. This poses limitations on their credibility and doubts about their adoption for the safety assessment and licensing of novel reactor designs. In this regard, Physics Informed Neural Networks (PINNs) are receiving growing attention for their ability to integrate fundamental physics laws and domain knowledge in the neural networks, thus assuring credible generalization capabilities and credible predictions. This paper presents the use of PINNs as surrogate models for accidental scenarios simulation in Nuclear Power Plants (NPPs). A case study of a Loss of Heat Sink (LOHS) accidental scenario in a Nuclear Battery (NB), a unique class of transportable, plug-and-play microreactors, is considered. A PINN is developed and compared with a Deep Neural Network (DNN). The results show the advantages of PINNs in providing accurate solutions, avoiding overfitting, underfitting and intrinsically ensuring physics-consistent results.

동적신경망 NARX 기반의 SAR 전력모듈 안전성 연구 (A NARX Dynamic Neural Network Platform for Small-Sat PDM)

  • 이해준
    • 한국정보통신학회논문지
    • /
    • 제24권6호
    • /
    • pp.809-817
    • /
    • 2020
  • 소형위성 전력분배 및 전송모듈의 설계와 개발과정에서 딥러닝 알고리즘으로 동적 전력자원의 안정성을 평가하였다. 안정성 평가에 따른 요구사항은 소형위성 탑재체인 SAR 레이더의 전력분배모듈과 수요모듈의 전력전송기능을 구성하였다. 전력모듈인 PDM을 구성하는 스위칭 전력부품의 성능확인을 위해 동적신경망을 활용하여 신뢰성을 검증하였다. 신뢰성 검증을 위한 딥러닝 적용대상은 소형위성 본체로부터 공급되는 전력에 대한 탑재체의 전력분배기능이다. 이 기능에 대한 성능확인을 위한 모델링 대상은 출력전압변화추이(Slew Rate Control), 전압오류(Voltage Error), 부하특성(Load Power)이다. 이를 위해 첫째, 모델링으로 Coefficient Structure 영역을 정의하고 PCB모듈을 제작하여 안정성과 신뢰성을 비교 평가하였다. 둘째, 딥러닝 알고리즘으로 Levenberg-Marquare기반의 Two-Way NARX신경망 Sigmoid Transfer를 사용하였다.

Voltage Quality Improvement with Neural Network-Based Interline Dynamic Voltage Restorer

  • Aali, Seyedreza;Nazarpour, Daryoush
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권6호
    • /
    • pp.769-775
    • /
    • 2011
  • Custom power devices such as dynamic voltage restorer (DVR) and DSTATCOM are used to improve the power quality in distribution systems. These devices require real power to compensate the deep voltage sag during sufficient time. An interline DVR (IDVR) consists of several DVRs in different feeders. In this paper, a neural network is proposed to control the IDVR performance to achieve optimal mitigation of voltage sags, swell, and unbalance, as well as improvement of dynamic performance. Three multilayer perceptron neural networks are used to identify and regulate the dynamics of the voltage on sensitive load. A backpropagation algorithm trains this type of network. The proposed controller provides optimal mitigation of voltage dynamic. Simulation is carried out by MATLAB/Simulink, demonstrating that the proposed controller has fast response with lower total harmonic distortion.

R기반의 딥 러닝을 이용한 데이터 예측 프로세스에 관한 연구 (A novel on Data Prediction Process using Deep Learning based on R)

  • 정세훈;김종찬;박홍준;소원호;심춘보
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.421-422
    • /
    • 2015
  • 최근 신경망 분석의 향상된 성능을 보여주는 심화 신경망 기술인 딥 러닝(Deep learning)이 각광을 받고 있는 실정이다. 이에 본 논문에서는 딥 러닝을 기반으로 분석 시각화 툴인 R을 이용한 특정 변수의 오류율 검증과 빅 데이터 예측 프로세스 설계를 제안한다. 딥 러닝에 적용된 알고리즘은 RBM(Restricted Boltzmann Machine)을 적용하였다. 특정 입력 변수에 대한 종속 변수 구분 후 각 종속 변수의 가중치를 적용한다. RBM 알고리즘을 통해 최종 데이터의 검증 및 오류율 검출과정을 R 프로그래밍에 적용하여 설계한다.

  • PDF

심층신경망 알고리즘을 이용한 가상환경에서의 멀미 측정 및 분석 (Motion Sickness Measurement and Analysis in Virtual Reality using Deep Neural Networks Algorithm)

  • 정대교;유상봉;장윤
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제25권1호
    • /
    • pp.23-32
    • /
    • 2019
  • 사이버 멀미는 VR 체험 중 발생하는 증상으로, 주로 감각과 인지 시스템 사이의 불일치로 인해 발생하는 것으로 추정된다. 하지만 감각 및 인지 시스템을 객관적으로 측정할 수 있는 방법이 없기 때문에, 사이버 멀미를 측정하는 것은 어렵다. 이를 해결하기 위해 사이버 멀미를 측정하기 위해 다양한 방법론들이 연구되고 있다. 기존의 멀미를 측정하기 위한 방법은 설문방식을 이용하거나, 머신 러닝을 이용하여 뇌파 데이터를 분석하는 방식으로 진행되어 왔다. 하지만 설문을 이용한 방식은 다소 객관성이 떨어지며, 머신 러닝을 사용하는 방식은 아직까지 높은 정확도를 얻은 연구가 부족하다. 본 논문에서는 뇌파 데이터를 Deep Neural Network (DNN) 딥러닝 알고리즘에 적용하여 객관적인 사이버 멀미 측정 방식을 제안한다. 또한 우리는 더 정확한 사이버 멀미 측정 결과를 위하여 딥러닝 네트워크 구조와 뇌파 데이터 전처리 기법을 제안한다. 우리의 접근 방법은 최대 98.88%의 정확도로 사이버 멀미를 측정한다. 또한 우리는 실험에서 사이버 멀미를 유발하는 영상의 특성을 분석한다. 일반적으로 사이버 멀미는 상하 움직임이 심한 화면, 화면의 지속적이고 빠른 전환, 공중에 떠있는 상황에서 발생한다.