• Title/Summary/Keyword: Deep Learning based System

Search Result 1,224, Processing Time 0.031 seconds

Deep reinforcement learning for base station switching scheme with federated LSTM-based traffic predictions

  • Hyebin Park;Seung Hyun Yoon
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.379-391
    • /
    • 2024
  • To meet increasing traffic requirements in mobile networks, small base stations (SBSs) are densely deployed, overlapping existing network architecture and increasing system capacity. However, densely deployed SBSs increase energy consumption and interference. Although these problems already exist because of densely deployed SBSs, even more SBSs are needed to meet increasing traffic demands. Hence, base station (BS) switching operations have been used to minimize energy consumption while guaranteeing quality-of-service (QoS) for users. In this study, to optimize energy efficiency, we propose the use of deep reinforcement learning (DRL) to create a BS switching operation strategy with a traffic prediction model. First, a federated long short-term memory (LSTM) model is introduced to predict user traffic demands from user trajectory information. Next, the DRL-based BS switching operation scheme determines the switching operations for the SBSs using the predicted traffic demand. Experimental results confirm that the proposed scheme outperforms existing approaches in terms of energy efficiency, signal-to-interference noise ratio, handover metrics, and prediction performance.

Cancellation Scheme of impusive Noise based on Deep Learning in Power Line Communication System (딥러닝 기반 전력선 통신 시스템의 임펄시브 잡음 제거 기법)

  • Seo, Sung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.29-33
    • /
    • 2022
  • In this paper, we propose the deep learning based pre interference cancellation scheme algorithm for power line communication (PLC) systems in smart grid. The proposed scheme estimates the channel noise information by applying a deep learning model at the transmitter. Then, the estimated channel noise is updated in database. In the modulator, the channel noise which reduces the power line communication performance is effectively removed through interference cancellation technique. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of bit error rate (BER). From the simulation results, it is confirmed that the proposed scheme has better BER performance compared to the theoretical model based on additive white Gaussian noise. As a result, the proposed interference cancellation with deep learning improves the signal quality of PLC systems by effectively removing the channel noise. The results of the paper can be applied to PLC for smart grid and general communication systems.

TV Watching Pattern Analysis System based on Multi-Attribute LSTM Model (다중속성 LSTM 모델 기반 TV 시청 패턴 분석 시스템)

  • Lee, Jongwon;Sung, Mikyung;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.537-542
    • /
    • 2021
  • Smart TVs provide a variety of services and information compared to existing TVs based on the Internet. In order to provide more personalized services or information, it is necessary to analyze users' viewing patterns and provide customized services or information based on them. The proposed system receives the user's TV viewing pattern, analyzes it, and recommends a TV program or movie as customized information to the user. For this, the system was constructed with a preprocessor and a deep learning model. The preprocessor refines the name of the TV program watched by the user, the date the TV program was watched, and the watched time. Then, the multi-attribute LSTM model trains the refined data and performs prediction.The proposed system is a system that provides customized information to users, and is believed to be a leading technology in digital convergence that combines existing IoT technology and deep learning technology.

Deep Learning Based On-Device Augmented Reality System using Multiple Images (다중영상을 이용한 딥러닝 기반 온디바이스 증강현실 시스템)

  • Jeong, Taehyeon;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.27 no.3
    • /
    • pp.341-350
    • /
    • 2022
  • In this paper, we propose a deep learning based on-device augmented reality (AR) system in which multiple input images are used to implement the correct occlusion in a real environment. The proposed system is composed of three technical steps; camera pose estimation, depth estimation, and object augmentation. Each step employs various mobile frameworks to optimize the processing on the on-device environment. Firstly, in the camera pose estimation stage, the massive computation involved in feature extraction is parallelized using OpenCL which is the GPU parallelization framework. Next, in depth estimation, monocular and multiple image-based depth image inference is accelerated using the mobile deep learning framework, i.e. TensorFlow Lite. Finally, object augmentation and occlusion handling are performed on the OpenGL ES mobile graphics framework. The proposed augmented reality system is implemented as an application in the Android environment. We evaluate the performance of the proposed system in terms of augmentation accuracy and the processing time in the mobile as well as PC environments.

Suggestions for the Development of RegTech Based Ontology and Deep Learning Technology to Interpret Capital Market Regulations (레그테크 기반의 자본시장 규제 해석 온톨로지 및 딥러닝 기술 개발을 위한 제언)

  • Choi, Seung Uk;Kwon, Oh Byung
    • The Journal of Information Systems
    • /
    • v.30 no.1
    • /
    • pp.65-84
    • /
    • 2021
  • Purpose Based on the development of artificial intelligence and big data technologies, the RegTech has been emerged to reduce regulatory costs and to enable efficient supervision by regulatory bodies. The word RegTech is a combination of regulation and technology, which means using the technological methods to facilitate the implementation of regulations and to make efficient surveillance and supervision of regulations. The purpose of this study is to describe the recent adoption of RegTech and to provide basic examples of applying RegTech to capital market regulations. Design/methodology/approach English-based ontology and deep learning technologies are quite developed in practice, and it will not be difficult to expand it to European or Latin American languages that are grammatically similar to English. However, it is not easy to use it in most Asian languages such as Korean, which have different grammatical rules. In addition, in the early stages of adoption, companies, financial institutions and regulators will not be familiar with this machine-based reporting system. There is a need to establish an ecosystem which facilitates the adoption of RegTech by consulting and supporting the stakeholders. In this paper, we provide a simple example that shows a procedure of applying RegTech to recognize and interpret Korean language-based capital market regulations. Specifically, we present the process of converting sentences in regulations into a meta-language through the morpheme analyses. We next conduct deep learning analyses to determine whether a regulatory sentence exists in each regulatory paragraph. Findings This study illustrates the applicability of RegTech-based ontology and deep learning technologies in Korean-based capital market regulations.

Exercise Recommendation System Using Deep Neural Collaborative Filtering (신경망 협업 필터링을 이용한 운동 추천시스템)

  • Jung, Wooyong;Kyeong, Chanuk;Lee, Seongwoo;Kim, Soo-Hyun;Sun, Young-Ghyu;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.173-178
    • /
    • 2022
  • Recently, a recommendation system using deep learning in social network services has been actively studied. However, in the case of a recommendation system using deep learning, the cold start problem and the increased learning time due to the complex computation exist as the disadvantage. In this paper, the user-tailored exercise routine recommendation algorithm is proposed using the user's metadata. Metadata (the user's height, weight, sex, etc.) set as the input of the model is applied to the designed model in the proposed algorithms. The exercise recommendation system model proposed in this paper is designed based on the neural collaborative filtering (NCF) algorithm using multi-layer perceptron and matrix factorization algorithm. The learning proceeds with proposed model by receiving user metadata and exercise information. The model where learning is completed provides recommendation score to the user when a specific exercise is set as the input of the model. As a result of the experiment, the proposed exercise recommendation system model showed 10% improvement in recommended performance and 50% reduction in learning time compared to the existing NCF model.

Deep Neural Network(DNN) based Clinic Decision Support System(CDSS) Framework (Deep Neural Network(DNN) 기반 Clinic Decision Support System(CDSS) Framework)

  • Yu, Hyerin;Joe, Inwhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.357-358
    • /
    • 2022
  • 이 논문은 Deep Learning 을 이용해 의사의 진단의 도움을 줄 수 있는 Clinic Decision Support System(CDSS) Framework 를 제안한다. 당뇨병, 고혈압, 고지혈증 같은 대사질환은 증상이 있는 경우도 있지만 없는 경우가 대부분이다.[1] 그렇기 때문에 원격으로 진료할 경우 대사질환에 대한 부분을 놓칠 수 있다. 이러한 부분을 챗봇이 의사에게 Deep Neural Network(DNN)으로 예측된 정보를 제공해 도움을 준다.

Development of a Hybrid Deep-Learning Model for the Human Activity Recognition based on the Wristband Accelerometer Signals

  • Jeong, Seungmin;Oh, Dongik
    • Journal of Internet Computing and Services
    • /
    • v.22 no.3
    • /
    • pp.9-16
    • /
    • 2021
  • This study aims to develop a human activity recognition (HAR) system as a Deep-Learning (DL) classification model, distinguishing various human activities. We solely rely on the signals from a wristband accelerometer worn by a person for the user's convenience. 3-axis sequential acceleration signal data are gathered within a predefined time-window-slice, and they are used as input to the classification system. We are particularly interested in developing a Deep-Learning model that can outperform conventional machine learning classification performance. A total of 13 activities based on the laboratory experiments' data are used for the initial performance comparison. We have improved classification performance using the Convolutional Neural Network (CNN) combined with an auto-encoder feature reduction and parameter tuning. With various publically available HAR datasets, we could also achieve significant improvement in HAR classification. Our CNN model is also compared against Recurrent-Neural-Network(RNN) with Long Short-Term Memory(LSTM) to demonstrate its superiority. Noticeably, our model could distinguish both general activities and near-identical activities such as sitting down on the chair and floor, with almost perfect classification accuracy.

Deep Interpretable Learning for a Rapid Response System (긴급대응 시스템을 위한 심층 해석 가능 학습)

  • Nguyen, Trong-Nghia;Vo, Thanh-Hung;Kho, Bo-Gun;Lee, Guee-Sang;Yang, Hyung-Jeong;Kim, Soo-Hyung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.805-807
    • /
    • 2021
  • In-hospital cardiac arrest is a significant problem for medical systems. Although the traditional early warning systems have been widely applied, they still contain many drawbacks, such as the high false warning rate and low sensitivity. This paper proposed a strategy that involves a deep learning approach based on a novel interpretable deep tabular data learning architecture, named TabNet, for the Rapid Response System. This study has been processed and validated on a dataset collected from two hospitals of Chonnam National University, Korea, in over 10 years. The learning metrics used for the experiment are the area under the receiver operating characteristic curve score (AUROC) and the area under the precision-recall curve score (AUPRC). The experiment on a large real-time dataset shows that our method improves compared to other machine learning-based approaches.

Performance Evaluation of Deep Neural Network (DNN) Based on HRV Parameters for Judgment of Risk Factors for Coronary Artery Disease (관상동맥질환 위험인자 유무 판단을 위한 심박변이도 매개변수 기반 심층 신경망의 성능 평가)

  • Park, Sung Jun;Choi, Seung Yeon;Kim, Young Mo
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.62-67
    • /
    • 2019
  • The purpose of this study was to evaluate the performance of deep neural network model in order to determine whether there is a risk factor for coronary artery disease based on the cardiac variation parameter. The study used unidentifiable 297 data to evaluate the performance of the model. Input data consists of heart rate parameters, which are SDNN (standard deviation of the N-N intervals), PSI (physical stress index), TP (total power), VLF (very low frequency), LF (low frequency), HF (high frequency), RMSSD (root mean square of successive difference) APEN (approximate entropy) and SRD (successive R-R interval difference), the age group and sex. Output data are divided into normal and patient groups, and the patient group consists of those diagnosed with diabetes, high blood pressure, and hyperlipidemia among the various risk factors that can cause coronary artery disease. Based on this, a binary classification model was applied using Deep Neural Network of deep learning techniques to classify normal and patient groups efficiently. To evaluate the effectiveness of the model used in this study, Kernel SVM (support vector machine), one of the classification models in machine learning, was compared and evaluated using same data. The results showed that the accuracy of the proposed deep neural network was train set 91.79% and test set 85.56% and the specificity was 87.04% and the sensitivity was 83.33% from the point of diagnosis. These results suggest that deep learning is more efficient when classifying these medical data because the train set accuracy in the deep neural network was 7.73% higher than the comparative model Kernel SVM.