• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.03 seconds

Variational autoencoder for prosody-based speaker recognition

  • Starlet Ben Alex;Leena Mary
    • ETRI Journal
    • /
    • v.45 no.4
    • /
    • pp.678-689
    • /
    • 2023
  • This paper describes a novel end-to-end deep generative model-based speaker recognition system using prosodic features. The usefulness of variational autoencoders (VAE) in learning the speaker-specific prosody representations for the speaker recognition task is examined herein for the first time. The speech signal is first automatically segmented into syllable-like units using vowel onset points (VOP) and energy valleys. Prosodic features, such as the dynamics of duration, energy, and fundamental frequency (F0), are then extracted at the syllable level and used to train/adapt a speaker-dependent VAE from a universal VAE. The initial comparative studies on VAEs and traditional autoencoders (AE) suggest that the former can efficiently learn speaker representations. Investigations on the impact of gender information in speaker recognition also point out that gender-dependent impostor banks lead to higher accuracies. Finally, the evaluation on the NIST SRE 2010 dataset demonstrates the usefulness of the proposed approach for speaker recognition.

A Hybrid Recommender System based on Deep Learning using Contents Preference (컨텐츠 선호도 정보를 이용한 딥러닝 기반의 하이브리드 추천 시스템)

  • Chae, Dong-Kyu;Kim, Sang-Wook
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.418-419
    • /
    • 2018
  • 본 논문에서는 사용자의 상품에 대한 평점 정보와 상품의 컨텐츠 정보를 모두 이용하는 하이브리드 추천 모델에 대해서 논의한다. 기존 논문들과는 다르게, 본 논문은 추천의 정확도를 높이기 위해 사용자가 상품의 컨텐츠 (예를 들면, 영화의 장르 또는 상품의 카테고리 등) 에 가질 수 있는 선호도를 예측하고, 이를 추가적으로 활용할 수 있는 딥러닝 기반의 추천 모델을 제안한다. 실세계의 데이터를 이용해서 제안하는 방법의 우수성을 보인다.

A Study on Running Large-Scale Deep Learning on Nurion System (누리온 시스템 상에서 거대 규모 딥러닝 수행 연구)

  • Myung, Hunjoo
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.115-117
    • /
    • 2019
  • 누리온 시스템은 Intel Xeon Phi 아키텍쳐를 기반한 8305개의 노드로 구성되었고, 이론 성능 25.7페타플롭스를 갖춘 시스템으로 2018년도에 도입되었다. 누리온 시스템은 그동안 KISTI가 지속적으로 수행해 온 국내 계산과학자를 지원하는 한편, 빅데이터를 기반으로 하는 거대 규모의 딥러닝 등의 새로운 AI 분야에서도 슈퍼컴퓨팅을 활용할 수 있도록 전략적으로 지원하고 있다. 본 논문에서는 이러한 거대 규모 딥러닝을 수행하는데 있어 발생하는 주요 이슈들과 이러한 이슈들을 누리온 시스템에서는 어떻게 해결하고 있는지에 대해 소개한다.

Robot Arm Control System using Deep Learning Object Detection (딥러닝 객체 검출을 이용한 로봇 팔 제어 시스템)

  • Lee, Se-Hoon;Kim, Jae-Seung
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.255-256
    • /
    • 2019
  • 본 논문에서는 물체를 집기(picking) 위해 필요한 깊이 값을 특수카메라인 리얼센스를 사용하여 받아와서 2D 카메라로는 하지 못하는 로봇 팔 피킹 시스템을 구현하였다. 객체 인식은 텐서플로우 객체 검출 라이브러리를 사용하여 정확도를 높였고, ROS 기반의 rviz, moveit, gazebo 등의 패키지를 사용하여 아두이노와 통신하며 로봇팔 하드웨어로 인식된 객체를 피킹하는 시스템을 구현하였다.

  • PDF

Deep Learning Approach Based on Transcriptome Profile for Data Driven Drug Discovery

  • Eun-Ji Kwon;Hyuk-Jin Cha
    • Molecules and Cells
    • /
    • v.46 no.1
    • /
    • pp.65-67
    • /
    • 2023
  • SMILES (simplified molecular-input line-entry system) information of small molecules parsed by one-hot array is passed to a convolutional neural network called black box. Outputs data representing a gene signature is then matched to the genetic signature of a disease to predict the appropriate small molecule. Efficacy of the predicted small molecules is examined by in vivo animal models. GSEA, gene set enrichment analysis.

Diving plan matching system (다이빙 플랜 매칭 시스템)

  • Choi, Won-Heum
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.301-302
    • /
    • 2022
  • 본 논문에서는 사용자 정보를 바탕으로, 사용자에게 적합한 다이빙 플랜을 자동으로 매칭하고, 해양생태정보를 수집하는 시스템을 제안한다. 이 시스템은 사용자의 정보를 바탕으로 사용자에게 적합한 다이빙 플랜이 자동으로 매칭되므로, 최적 조건의 다이빙 플랜이 사용자에게 제공될 수 있다. 또한, 해양 생태 정보를 수집하여 데이터화함으로써 해양 생태 변화에 대한 자료가 사용자에게 제공될 수 있다.

  • PDF

Unraveling Emotions in Speech: Deep Neural Networks for Emotion Recognition (음성을 통한 감정 해석: 감정 인식을 위한 딥 뉴럴 네트워크 예비 연구)

  • Edward Dwijayanto Cahyadi;Mi-Hwa Song
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.411-412
    • /
    • 2023
  • Speech emotion recognition(SER) is one of the interesting topics in the machine learning field. By developing SER, we can get numerous benefits. By using a convolutional neural network and Long Short Term Memory (LSTM ) method as a part of Artificial intelligence, the SER system can be built.

A travel recommendation system tailored to personal tendency analysis using deep learning (딥러닝을 활용한 개인 성향 분석에 맞춘 여행 추천시스템)

  • Sol-Bi Kim;Chang-Suk Cho
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.504-506
    • /
    • 2023
  • 본 연구에서는 기존 여행지 추천의 플랫폼에 있어 개인의 취향에 맞는 여행지 추천이 어렵다는 점을 해결하고자, 비선형적 관계를 해결할 수 있는 NCF 심층신경망 추천시스템을 이용하여 개인의 성향에 따라 여행지를 추천해 주는 시스템을 제안하고 이를 평가한 결과를 보고한다.

A Study on the Engine Sound Classification System Based on Deep Learning (딥러닝을 이용한 엔진음 분류 시스템에 대한 연구)

  • Jin Heo;Jaemyoung Lee
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.557-558
    • /
    • 2024
  • 엔진을 정확하게 분류하는 것은 엔진의 수리 및 유지보수에 있어 중요한 과제 중 하나이다. 하지만 청음훈련을 통해 이를 숙달하는데는 오랜 시간이 걸리고, 엔지니어의 주관적 요인에 큰 영향을 받는다. 이를 해결하기 위해, 엔진의 음향적 특성을 이용한 머신러닝을 통해 엔진을 구분하는 시스템을 제안한다.

Automatic detection of periodontal compromised teeth in digital panoramic radiographs using faster regional convolutional neural networks

  • Thanathornwong, Bhornsawan;Suebnukarn, Siriwan
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.169-174
    • /
    • 2020
  • Purpose: Periodontal disease causes tooth loss and is associated with cardiovascular diseases, diabetes, and rheumatoid arthritis. The present study proposes using a deep learning-based object detection method to identify periodontally compromised teeth on digital panoramic radiographs. A faster regional convolutional neural network (faster R-CNN) which is a state-of-the-art deep detection network, was adapted from the natural image domain using a small annotated clinical data- set. Materials and Methods: In total, 100 digital panoramic radiographs of periodontally compromised patients were retrospectively collected from our hospital's information system and augmented. The periodontally compromised teeth found in each image were annotated by experts in periodontology to obtain the ground truth. The Keras library, which is written in Python, was used to train and test the model on a single NVidia 1080Ti GPU. The faster R-CNN model used a pretrained ResNet architecture. Results: The average precision rate of 0.81 demonstrated that there was a significant region of overlap between the predicted regions and the ground truth. The average recall rate of 0.80 showed that the periodontally compromised teeth regions generated by the detection method excluded healthiest teeth areas. In addition, the model achieved a sensitivity of 0.84, a specificity of 0.88 and an F-measure of 0.81. Conclusion: The faster R-CNN trained on a limited amount of labeled imaging data performed satisfactorily in detecting periodontally compromised teeth. The application of a faster R-CNN to assist in the detection of periodontally compromised teeth may reduce diagnostic effort by saving assessment time and allowing automated screening documentation.