• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.027 seconds

Improving learning outcome prediction method by applying Markov Chain (Markov Chain을 응용한 학습 성과 예측 방법 개선)

  • Chul-Hyun Hwang
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.595-600
    • /
    • 2024
  • As the use of artificial intelligence technologies such as machine learning increases in research fields that predict learning outcomes or optimize learning pathways, the use of artificial intelligence in education is gradually making progress. This research is gradually evolving into more advanced artificial intelligence methods such as deep learning and reinforcement learning. This study aims to improve the method of predicting future learning performance based on the learner's past learning performance-history data. Therefore, to improve prediction performance, we propose conditional probability applying the Markov Chain method. This method is used to improve the prediction performance of the classifier by allowing the learner to add learning history data to the classification prediction in addition to classification prediction by machine learning. In order to confirm the effectiveness of the proposed method, a total of more than 30 experiments were conducted per algorithm and indicator using empirical data, 'Teaching aid-based early childhood education learning performance data'. As a result of the experiment, higher performance indicators were confirmed in cases using the proposed method than in cases where only the classification algorithm was used in all cases.

Mushroom Image Recognition using Convolutional Neural Network and Transfer Learning (컨볼루션 신경망과 전이 학습을 이용한 버섯 영상 인식)

  • Kang, Euncheol;Han, Yeongtae;Oh, Il-Seok
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.53-57
    • /
    • 2018
  • A poisoning accident is often caused by a situation in which people eat poisonous mushrooms because they cannot distinguish between edible mushrooms and poisonous mushrooms. In this paper, we propose an automatic mushroom recognition system by using the convolutional neural network. We collected 1478 mushroom images of 38 species using image crawling, and used the dataset for learning the convolutional neural network. A comparison experiment using AlexNet, VGGNet, and GoogLeNet was performed using the collected datasets, and a comparison experiment using a class number expansion and a fine-tuning technique for transfer learning were performed. As a result of our experiment, we achieve 82.63% top-1 accuracy and 96.84% top-5 accuracy on test set of our dataset.

Development of an AI Analysis Service System based on OpenFaaS (OpenFaaS 기반 AI 분석 서비스 시스템 구축)

  • Jang, Rae-young;Lee, Ryong;Park, Min-woo;Lee, Sang-hwan
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.97-106
    • /
    • 2020
  • Due to the rapid development and dissemination of 5G communication and IoT technologies, there are increasing demands for big data analysis techniques and service systems. In particular, explosively growing demands on AI technology adoption are also causing high competitions to take advantages of machine/deep-learning models to extract novel values from enormously collected data. In order to adopt AI technology to various research and application domains, it is necessary to prepare high-performance GPU-equipped systems and perform complicated settings to utilze deep learning models. To relieve the efforts and lower the barrier to utilize AI techniques, AIaaS(AI as a service) platform is attracting a great deal of attention as a promising on-line service, where the complexity of preparation and operation can be hidden behind the cloud side and service developers only need to utilize the high-level AI services easily. In this paper, we propose an AIaaS system which can support the creation of AI services based on Docker and OpenFaaS from the registration of models to the on-line operation. We also describe a case study to show how AI services can be easily generated by the proposed system.

Proposal of a Step-by-Step Optimized Campus Power Forecast Model using CNN-LSTM Deep Learning (CNN-LSTM 딥러닝 기반 캠퍼스 전력 예측 모델 최적화 단계 제시)

  • Kim, Yein;Lee, Seeun;Kwon, Youngsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.8-15
    • /
    • 2020
  • A forecasting method using deep learning does not have consistent results due to the differences in the characteristics of the dataset, even though they have the same forecasting models and parameters. For example, the forecasting model X optimized with dataset A would not produce the optimized result with another dataset B. The forecasting model with the characteristics of the dataset needs to be optimized to increase the accuracy of the forecasting model. Therefore, this paper proposes novel optimization steps for outlier removal, dataset classification, and a CNN-LSTM-based hyperparameter tuning process to forecast the daily power usage of a university campus based on the hourly interval. The proposing model produces high forecasting accuracy with a 2% of MAPE with a single power input variable. The proposing model can be used in EMS to suggest improved strategies to users and consequently to improve the power efficiency.

Development of a deep-learning based automatic tracking of moving vehicles and incident detection processes on tunnels (딥러닝 기반 터널 내 이동체 자동 추적 및 유고상황 자동 감지 프로세스 개발)

  • Lee, Kyu Beom;Shin, Hyu Soung;Kim, Dong Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1161-1175
    • /
    • 2018
  • An unexpected event could be easily followed by a large secondary accident due to the limitation in sight of drivers in road tunnels. Therefore, a series of automated incident detection systems have been under operation, which, however, appear in very low detection rates due to very low image qualities on CCTVs in tunnels. In order to overcome that limit, deep learning based tunnel incident detection system was developed, which already showed high detection rates in November of 2017. However, since the object detection process could deal with only still images, moving direction and speed of moving vehicles could not be identified. Furthermore it was hard to detect stopping and reverse the status of moving vehicles. Therefore, apart from the object detection, an object tracking method has been introduced and combined with the detection algorithm to track the moving vehicles. Also, stopping-reverse discrimination algorithm was proposed, thereby implementing into the combined incident detection processes. Each performance on detection of stopping, reverse driving and fire incident state were evaluated with showing 100% detection rate. But the detection for 'person' object appears relatively low success rate to 78.5%. Nevertheless, it is believed that the enlarged richness of image big-data could dramatically enhance the detection capacity of the automatic incident detection system.

A Comparison of Pre-Processing Techniques for Enhanced Identification of Paralichthys olivaceus Disease based on Deep Learning (딥러닝 기반 넙치 질병 식별 향상을 위한 전처리 기법 비교)

  • Kang, Ja Young;Son, Hyun Seung;Choi, Han Suk
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.71-80
    • /
    • 2022
  • In the past, fish diseases were bacterial in aqua farms, but in recent years, the frequency of fish diseases has increased as they have become viral and mixed. Viral diseases in an enclosed space called a aqua farm have a high spread rate, so it is very likely to lead to mass death. Fast identification of fish diseases is important to prevent group death. However, diagnosis of fish diseases requires a high level of expertise and it is difficult to visually check the condition of fish every time. In order to prevent the spread of the disease, an automatic identification system of diseases or fish is needed. In this paper, in order to improve the performance of the disease identification system of Paralichthys olivaceus based on deep learning, the existing pre-processing method is compared and tested. Target diseases were selected from three most frequent diseases such as Scutica, Vibrio, and Lymphocystis in Paralichthys olivaceus. The RGB, HLS, HSV, LAB, LUV, XYZ, and YCRCV were used as image pre-processing methods. As a result of the experiment, HLS was able to get the best results than using general RGB. It is expected that the fish disease identification system can be advanced by improving the recognition rate of diseases in a simple way.

Improved Anatomical Landmark Detection Using Attention Modules and Geometric Data Augmentation in X-ray Images (어텐션 모듈과 기하학적 데이터 증강을 통한 X-ray 영상 내 해부학적 랜드마크 검출 성능 향상)

  • Lee, Hyo-Jeong;Ma, Se-Rie;Choi, Jang-Hwan
    • Journal of the Korea Computer Graphics Society
    • /
    • v.28 no.3
    • /
    • pp.55-65
    • /
    • 2022
  • Recently, deep learning-based automated systems for identifying and detecting landmarks have been proposed. In order to train such a deep learning-based model without overfitting, a large amount of image and labeling data is required. Conventionally, an experienced reader manually identifies and labels landmarks in a patient's image. However, such measurement is not only expensive, but also has poor reproducibility, so the need for an automated labeling method has been raised. In addition, in the X-ray image, since various human tissues on the path through which the photons pass are displayed, it is difficult to identify the landmark compared to a general natural image or a 3D image modality image. In this study, we propose a geometric data augmentation technique that enables the generation of a large amount of labeling data in X-ray images. In addition, the optimal attention mechanism for landmark detection was presented through the implementation and application of various attention techniques to improve the detection performance of 16 major landmarks in the skull. Finally, among the major cranial landmarks, markers that ensure stable detection are derived, and these markers are expected to have high clinical application potential.

Grasping a Target Object in Clutter with an Anthropomorphic Robot Hand via RGB-D Vision Intelligence, Target Path Planning and Deep Reinforcement Learning (RGB-D 환경인식 시각 지능, 목표 사물 경로 탐색 및 심층 강화학습에 기반한 사람형 로봇손의 목표 사물 파지)

  • Ryu, Ga Hyeon;Oh, Ji-Heon;Jeong, Jin Gyun;Jung, Hwanseok;Lee, Jin Hyuk;Lopez, Patricio Rivera;Kim, Tae-Seong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.9
    • /
    • pp.363-370
    • /
    • 2022
  • Grasping a target object among clutter objects without collision requires machine intelligence. Machine intelligence includes environment recognition, target & obstacle recognition, collision-free path planning, and object grasping intelligence of robot hands. In this work, we implement such system in simulation and hardware to grasp a target object without collision. We use a RGB-D image sensor to recognize the environment and objects. Various path-finding algorithms been implemented and tested to find collision-free paths. Finally for an anthropomorphic robot hand, object grasping intelligence is learned through deep reinforcement learning. In our simulation environment, grasping a target out of five clutter objects, showed an average success rate of 78.8%and a collision rate of 34% without path planning. Whereas our system combined with path planning showed an average success rate of 94% and an average collision rate of 20%. In our hardware environment grasping a target out of three clutter objects showed an average success rate of 30% and a collision rate of 97% without path planning whereas our system combined with path planning showed an average success rate of 90% and an average collision rate of 23%. Our results show that grasping a target object in clutter is feasible with vision intelligence, path planning, and deep RL.

Simplification Method for Lightweighting of Underground Geospatial Objects in a Mobile Environment (모바일 환경에서 지하공간객체의 경량화를 위한 단순화 방법)

  • Jong-Hoon Kim;Yong-Tae Kim;Hoon-Joon Kouh
    • Journal of Industrial Convergence
    • /
    • v.20 no.12
    • /
    • pp.195-202
    • /
    • 2022
  • Underground Geospatial Information Map Management System(UGIMMS) integrates various underground facilities in the underground space into 3D mesh data, and supports to check the 3D image and location of the underground facilities in the mobile app. However, there is a problem that it takes a long time to run in the app because various underground facilities can exist in some areas executed by the app and can be seen layer by layer. In this paper, we propose a deep learning-based K-means vertex clustering algorithm as a method to reduce the execution time in the app by reducing the size of the data by reducing the number of vertices in the 3D mesh data within the range that does not cause a problem in visibility. First, our proposed method obtains refined vertex feature information through a deep learning encoder-decoder based model. And second, the method was simplified by grouping similar vertices through K-means vertex clustering using feature information. As a result of the experiment, when the vertices of various underground facilities were reduced by 30% with the proposed method, the 3D image model was slightly deformed, but there was no missing part, so there was no problem in checking it in the app.

An Adaptation Method in Noise Mismatch Conditions for DNN-based Speech Enhancement

  • Xu, Si-Ying;Niu, Tong;Qu, Dan;Long, Xing-Yan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4930-4951
    • /
    • 2018
  • The deep learning based speech enhancement has shown considerable success. However, it still suffers performance degradation under mismatch conditions. In this paper, an adaptation method is proposed to improve the performance under noise mismatch conditions. Firstly, we advise a noise aware training by supplying identity vectors (i-vectors) as parallel input features to adapt deep neural network (DNN) acoustic models with the target noise. Secondly, given a small amount of adaptation data, the noise-dependent DNN is obtained by using $L_2$ regularization from a noise-independent DNN, and forcing the estimated masks to be close to the unadapted condition. Finally, experiments were carried out on different noise and SNR conditions, and the proposed method has achieved significantly 0.1%-9.6% benefits of STOI, and provided consistent improvement in PESQ and segSNR against the baseline systems.