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Abstract 
 

The deep learning based speech enhancement has shown considerable success. However, it 
still suffers performance degradation under mismatch conditions. In this paper, an adaptation 
method is proposed to improve the performance under noise mismatch conditions. Firstly, we 
advise a noise aware training by supplying identity vectors (i-vectors) as parallel input features 
to adapt deep neural network (DNN) acoustic models with the target noise. Secondly, given a 
small amount of adaptation data, the noise-dependent DNN is obtained by using L2 
regularization from a noise-independent DNN, and forcing the estimated masks to be close to 
the unadapted condition. Finally, experiments were carried out on different noise and SNR 
conditions, and the proposed method has achieved significantly 0.1%-9.6% benefits of STOI, 
and provided consistent improvement in PESQ and segSNR against the baseline systems. 
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1. Introduction 

Speech enhancement is an essential part of speech signal processing in noisy environment, 
aiming at separating useful clean speech from noisy speech and improving the intelligibility 
and quality of contaminated speech [1]. It is broadly applied in many domains, such as speech 
interaction, teleconferencing, automatic speech recognition (ASR), speaker identification 
systems etc. Classical speech enhancement methods including spectral subtraction [2], Wiener 
filtering [3], statistical model-based methods [4], non-negative matrix factorization algorithms 
[5] and recently proposed deep neural network(DNN)-based enhancement [6-10] usually 
degrade rapidly in mismatch conditions. DNN is a multiple layer’s perceptron, which is 
composed of an input layer, an output layer and three or more hidden layers. So far, speech 
enhancement in mismatch condition is still a very challenging problem. 

In the situation of environment mismatch, noise adaptation can help to improve the 
modeling accuracies under the unseen type of noise by using a small amount of adaptation 
data. 

There are mainly two kinds of noise adaptation algorithms. One is using Gaussian mixture 
models (GMMs), the other is based on DNN framework. Traditional GMM based noise 
adaptation methods include parameter adaptation method like vector Taylor series (VTS) 
[11-14] adaptation and feature normalization such as feature-space maximum likelihood linear 
regression (fMLLR) [15]. In VTS adaptation, an estimated noise model is used to adapt the 
Gaussian parameters of the recognizer based on a physical model that defines how noise 
corrupts clean speech. The nonlinear relationship is often approximated with the first-order 
VTS in GMMs. FMLLR applies an affine transform to the feature vector so that the 
transformed feature matches the model better. For GMM-HMMs, fMLLR transformations are 
estimated to maximize the likelihood of the adaptation data given to the model. [15] proposed 
feature-space discriminative linear regression (fDLR) in DNN framework, where 
cross-entropy (CE), a discriminative function, is used as optimization criterion. The fDLR in 
DNN is just like fMLLR in GMM acoustic model, and optimization criterion is the only 
difference. 

In [16-17], a Noise-aware Training (NaT) is proposed, in which the DNN is being given 
noise estimation in order to automatically learn the mapping from the noisy speech and noise 
to the ideal mask labels, implicitly through a clean speech estimation. Noise information can 
be derived in many different ways. It can be jointly learned with the rest of the model 
parameters, or it can be estimated completely independent of the DNN training. For example, 
it may be learned from a separate DNN from which either the output node or the last hidden 
layer can be used to represent the noise information. In recent years, some speaker adaptation 
methods have been successfully utilized for noise adaptation. In [18-19], speaker-code based 
method is proposed to perform speaker adaptation in model space without using any 
adaptation neural networks. In [20], the probabilistic principle component analysis (PPCA) is 
proposed to provide not only the speaker space models but also a priori distribution, which can 
be directly applied to the maximum a posteriori (MAP) estimation scheme of the model 
parameters. Among the speaker adaptation methods, in [21], i-vector [22-23] method is used. 
I-vector is a popular technique for speaker verification and recognition. It encapsulates the 
most important information about a speaker’s, noise’s or device’s identity in a 
low-dimensional fixed-length representation and thus is an attractive tool for speaker 
adaptation techniques for ASR. Since a single low-dimensional i-vector is estimated from all 
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the utterances of the same speaker, the same type of noise or the same device, i-vector can be 
reliably estimated from less data than other approaches. I-vector has become the common 
speaker adaptation feature, rarely used in speech enhancement as a representation of 
environment information. 

Some ideas in DNN speech recognition can be used in speech enhancement for reference. 
Although the adapted DNN-based acoustic model shows more performance gain than the 
traditional acoustic models, they are mainly used for ASR performance promotion. The 
attractiveness of NaT and these previous works (notably [9]) motivated us to look at their 
applicability to noise adaptation of DNNs for speech enhancement. 

In this paper, a noise adaptation method based on DNN for speech enhancement is 
proposed to ameliorate the mismatching problem under multi-type noise condition. We 
combine noise-aware training (NaT) and L2 regularization. We use NaT to obtain noise 
information as auxiliary features, and the DNN can tune model parameters with it. And L2 
regularization is added to original adaptation criterion, so that we can use a small amount of 
adaptation data, improving the performance of mismatching system and ameliorating the noise 
adaptation. 

The rest of the paper is organized as follows. Section 2 describes the supervised speech 
enhancement system in DNN framework. In Section 3, noise-aware training (NaT) with 
identity-vector (i-vector) and L2 regularization for speech enhancement are proposed. In 
Section 4, we show experimental settings and report some results. Section 5 concludes this 
paper. 

2. Supervised Speech Enhancement System 
Speech enhancement can be interpreted as the process that maps a noisy signal to a 

separated signal with improved intelligibility and/or perceptual quality. Without considering 
the impact of phase, this is often treated as the estimation of clean speech magnitude or ideal 
masks. Supervised speech enhancement formulates this as a supervised learning problem that 
the mapping is explicitly learned from data. Acoustic features extracted from a mixed signal, 
along with the corresponding desired outputs are fed into a learning machine for training. 
Enhanced speech is obtained by sending estimated outputs and mixture phase into a 
resynthesizer. 

Fig. 1 shows the diagram of the evaluation system, which consists of the feature extraction 
component and the multiple layers’ perceptron (MLP) classification component. We extract 
acoustic features from an input signal at the frame level, which are sent to an MLP classifier 
for ideal mask estimation. Common masks contain ideal binary mask (IBM) [24], target binary 
mask (TBM) [25], ideal ratio mask (IRM) [26] etc. IRM was the best target in mask–based 
speech enhancement proved in [27]. 

Several classical acoustic features are used in the baseline system, including Amplitude 
Modulation Spectrogram (AMS)[28], Relative Spectral Transformed Perceptual Linear 
Prediction Coefficients (RASTA-PLP) [29-30], and Gamma-tone filterbank power spectra 
(GF) [31]. 

To further incorporate temporal context, a 5-frame window of features are input to the 
DNNs. The output of the network is composed of the corresponding 5-frame window of IRM. 
The enhanced signals are resynesized by the IRM prediction. 

Additionally, we use two DNN training strategies, Restricted Boltzmann Machine (RBM) 
based pretraining [6] and dropout with ReLU [32-33]. Restricted Boltzmann Machine (RBM) 
pre-training is used to avoid falling into local minima. Dropout is to overcome the over-fitting 
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in DNN training. ReLU can realize parameter sparsity through simple thresholding activation. 
Hence, it can speed DNN training, improve generalization and alleviate gradient vanish 
problem. 
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Fig. 1. Speech Enhancement System based on DNN and masks 

3. Proposed Methods 
In this paper, we propose to adapt deep neural network (DNN) acoustic models to a target 

noise type or signal-to-noise ratio (SNR) by supplying noise identity vectors (i-vectors) as 
input features to the network in parallel with the regular acoustic features as mentioned in 
Section 1. Additionally, to ameliorate the influence of mismatch conditions, we use 
regularization methods of conservative training. Combing these two methods above, the 
performance of speech enhancement system in mismatch conditions is expected to improve 
significantly. 

3.1 Noise-aware Training (NaT) with i-vectors 
Some sub-space adaptation methods explicitly estimate the noise or speaker information 

from the utterance and provide this information to the network. It is hoped that the DNN 
training algorithm can automatically figure out how to adjust the model parameters to exploit 
the noise, speaker, or device information. We call such approaches noise-aware training (NaT) 
when the noise information is used, which is very similar to speaker aware training (SaT) or 
device aware training (DaT). The only difference lies in the auxiliary input. 

In speech recognition, i-vectors are used to represent speaker information. That model is 
trained of training sentences of many speakers and few noise types, so that the i-vectors 
contain more speaker information and work well in speaker adaptation. In speech 
enhancement, we can transfer this idea to make i-vectors represent noise information for 
speech enhancement. In this paper, we choose training sentences of few speakers to mix many 
types of noises, in order that the extracted i-vectors can well represent noise information. By 
adding i-vectors as a complementary feature, noise information is fed into the DNN along with 
other acoustic features. The IRM is learned from all the features, so it contains environment 
information which is helpful in mismatch conditions. 

 
3.1.1 Extracting i-vector 
I-vector maps the input high dimensional feature vector into a low dimensional feature 

space, retaining most information of the input feature. Let ( )hM  denotes the mean supervector 
in a GMM which is related to languages and channels. Then for a voice segment: 

 

javascript:void(0);
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 ( ) ( )h h= +M m Tw  (1)
 where m  is a mean supervector independent with languages and channels, T is a matrix 

representing R  spanning subspace with important variability in the mean supervector space, 
( )hw  is a hidden variable of a normal distribution, and i-vector is the point-estimation of 
( )hw . 

Let  be the feature vector of a training voice segment h . Let 

 be the likelihood of ( )sc  calculated under the model assumption of 
i-vector, where h  is the index of training speech, t  is the index of frames of speech feature, 
and T  is the length of the voice segment. The objective function of i-vector is maximizing 
the overall probability of all the voice segments, i.e.: 

  (2) 

This optimization problem can be solved by EM algorithm as following [6]: 
1) The E-Step: For each voice segment h , using the current estimates of T , and the prior 

( ( ) , )w h I 0  to calculate the posterior distribution of ( )hw as 

  (3) 

2) The M-Step: Update T  by maximizing Equation (4): 

    (4) 

Then ( )hw can be obtained using Equation(5):  

  (5) 

In previous researches, i-vectors are often used for representing speaker information. In our 
experiments, we choose training sentences of few speakers in many noise conditions in order 
to make the extracted i-vector represent more about noise environment rather than the speaker 
information.  

 
3.1.2 I-vectors as auxiliary features 
Classical DNN-based ideal mask estimation uses common short time acoustic features 

without any speaker and channel information. In our method, to reduce the influence of noise 
mismatch conditions, i-vector is extracted as a long-time feature to represent noise 
characteristics. The typical process of extracting i-vector feature and adding it to DNN input is 
showed in Fig. 2. 
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Fig. 2. extracting i-vector based on DNN 
 

The right network in Fig. 2 shows the DNN estimating ideal masks for speech 
enhancement. Classical features, including AMS, RASTA-PLP and GF, along with their delta, 
are concatenated to obtain the F dimensional input features. The ideal ratio mask (IRM), which 
is obtained by a G-channel Gammatone filterbank and in the range of [0, 1], is used as the 
output of the network. 

The universal background model (UBM) are constructed using all the training data with 
feature of MFCCs. Using the algorithm mentioned in Section 3.1.1, utterance-level 
C-dimensional i-vectors are extracted. And for both training and testing, the i-vector for a 
given noise condition is concatenated to every-frame features. In order to further incorporate 
temporal context, for the other several features, we splice a 5-frame window of features as the 
input of DNN to estimate masks. So the DNN input is 5C F+ ∗  dimensional. The method 
only needs to increase the number of neurons of input without changing original algorithm. 

I-vector, as an additional utterance-level feature, is conducive to speaker, channel and 
background normalization. Recently, i-vector has achieved great success in speech 
recognition domain. In this paper, we apply i-vector to speech enhancement. 

3.2 L2 regularization 
An obvious approach to adapting DNNs is adjusting all the DNN parameters with the 

adaptation data, starting from the noise-independent (NI) model. However, doing so may 
destroy previously learned information and overfit the adaptation data, esp. if the adaptation 
set is small. To prevent this, adaptation needs to be done conservatively. The technique here 
does exactly this. 

Conservative training (CT)[35-37] is a kind of adaptation techniques often used in the 
situation that the adaptation set size is small comparing with the number of DNN parameters. 
CT can be achieved by adding regularizations to the adaptation criterion, such as 
Kullback-Leibler divergence (KLD) [37] regularization, L1 regularization[38],  and L2 
regularization[35]. An alternative CT technique is adapting only selected weights [39]. 
Adaptation with very small learning rate and an early stop can also be considered as CT.  



4936                                                                                         Xu Si-Ying et al: An Adaptation Method in Noise Mismatch Conditions 
for DNN-based Speech Enhancement 

The technique developed in this paper adapts the model conservatively by forcing the 
output vector estimated from the adapted model to be close to that from the unadapted model. 
By doing this, the trained model can be tuned to adapt the test environment with a small 
amount of adaptation data, which avoids large data and long training time and can improve the 
test performance in mismatch conditions. This constraint is realized by adding regularization 
to the adaptation criterion, because the DNN of our system works as a regressor, aiming to 
estimate the IRM as the output. Comparing to KLD normalization in [37], we select a more 
suitable normalization function for mask estimating. We have chosen three linear 
regularization functions: L1 regularization, L2 regularization and elastic net regularization[40], 
and tested them respectively like that of [41]. The results showed that the L2 regularization has 
a better performance and is easy to calculate, so we select L2 regularization and apply it to 
speech enhancement domain firstly.  

The intuitive explanation of L2 regularization is: the distance of the output vectors 
estimating from adaptive model should not differ too greatly from that estimating from 
unadapted model. The output of DNN is a vector, a measurement of whose distance is L2 norm. 
We add L2 regularization to the adaptive criteria as a regular term to obtain the regular term as 
follows: 

2 2
( , ; ) (1 ) ( , ; ) ( , ; , ; )L L NI NIJ W b N J W b N R W b W b Nλ λ= − +                 (11) 

where λ  is the regularization weight. 
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After adding L2 regularization, the regularized adaptation criterion can be converted to 
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3.3 Combination of NaT and L2 regularization 
The NaT method consists in providing noise i-vectors alongside aforementioned features 

as inputs to the neural net. The training and test data are augmented with these i-vectors which 
are constant for a given noise and change across different noises. 

The L2 regularization is added to the MSE criterion to adapt the model. This can be applied 
to DNN adaptation via back propagation (BP) algorithm, only modifying the error signals. The 
interpolation weight, which is directly derived from the regularization weight λ , can be 
adjusted, typically using a development set, based on the size of the adaptation set, the learning 
rate, and whether the adaptation is supervised or unsupervised. When 1λ = , we trust 
completely the NI model and ignore all new information from the adaptation data. When 1λ = , 
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we adapt the model solely on the adaptation set, ignoring information from the NI model 
except using it as the starting point. Intuitively, we should use a large λ  for a small adaptation 
set and a small λ  for a large adaptation set. In our experiment, we try different λ  for every 
situation and test the performance separately. 

This paper combines NaT with L2 regularization for noise adaptive speech enhancement 
showed in Fig. 3. NaT can help bring noise and channel information into account, and L2 
regularization can use data in development set to adapt the DNN. The combinations of these 
two methods can effectively utilize the advantages of each other, leading to better speech 
enhancement results. Fig. 4 and Fig. 5 is a diagram of speech enhancement. Fig. 4 is the 
comparison of the waveforms of noisy speech (the upper) and the enhanced speech (the lower). 
Fig. 5 is the comparison of the spectrums of noisy speech (the upper) and the enhanced speech 
(the lower). From the two figures, we can see that our method does work in reducing the noise. 
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Fig. 3. Proposed System 

 

 
Fig. 4. Waveform Comparison 
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Fig. 5. Spectrum Comparison 

4. Experimental and Results 

4.1 Experimental Settings 
4.1.1 Data 

All the experiments are based on Voice Bank corpus [42] speech data set. We choose eight 
types of noises from NOISEX-92[43]: factory1, destroyer engine, Volvo, f16, m109, destroyer 
ops, and white for baseline system. And we choose 2520 clean speech utterances of 6 speakers 
(including both genders) from Voice Bank corpus to mix with the noises aforementioned at 
different SNRs (-5dB, 0dB, 5dB, 10dB, 15dB and 20dB) to obtain a parallel training dataset 
and choose 100 utterances to obtain adaptive dataset. Other 200 clean utterances are chosen to 
mix with these noises at different SNRs to constitute the core testing dataset.  

All the noises are 235 seconds long. To avoid overlapping between training and testing 
noise, we cut the noise into two halves. When generating training set, we use random cuts from 
the first 2 minutes of each noise to mix with the training utterances at -5, 0, 5, 10, 15 and 20 
dBs. The testing mixtures are constructed by mixing random cuts from the last 2 minutes of 
each noise with the testing utterances at -5, 0, 5, 10, 15 and 20 dBs The adaptive set is 
generated as the training set. 

 
4.1.2 Parameters settings 

As showed in Fig. 1 in Section 2, the noisy signals with 16 kHz sample rate are passed 
through the predesigned 64-channel gamma-tone filter bank. After obtaining 64 sub bands, 
speech signals are divided into frames with 20ms frame length and 10ms frame shift. Then 
frame-level features are extracted and concatenated with their corresponding delta portions. 
To encode more information, we use a series of features (15-dimensional AMS, 
13-dimensional RASTA-PLP and 64-dimensional GF). In total, the features are 92 
dimensional. Adding their delta, the features are 184 dimensional. So as mentioned in Section 
3.1.2, the feature dimensional F is equal to 184. Splicing 5-frame window, the feature is 5*184 
=920 dimensional. [21] discussed the effect of having different i-vector dimensions and 
proved that having an i-vector dimension of 100 is a reasonable choice. So using the algorithm 
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mentioned in Section 3.1.1, utterance-level 100-dimensioanl i-vectors are extracted, indicating 
that C is equal to 100. So the input features are 5*184+100=1020 dimensional. The DNN, as a 
regressor, is used to learn the estimated ratio mask (ERM) of every frequency band. The DNN 
includes 3 hidden layers, each of which has 1024 units, and an input layer and an output layer. 
The output of the DNN is 64 dimensional Gamma-tone filterbank. IRM, ranging from 0 to 1, is 
used as the target function. Sigmoid function is chosen to be the output function. 

Short time Fourier analysis is used to compute the coefficients of each overlapped frame. 
We use the adaptive gradient descent (AGD) [44] along with a momentum term as the 
optimization technique. A momentum rate of 0.5 is used for the first 5 epochs, after which the 
rate increases to and is kept as 0.9. The DNNs are trained to predict the desired outputs across 
all frequency bands, and the mean squared error (MSE) is used as the cost (loss) function for 
this regression task. 

4.2 Evaluation Criteria 
For evaluation metrics, we use the Short-Time Objective Intelligibility score (STOI) [45]to 

measure the objective intelligibility. We also evaluate objective speech quality using the 
Perceptual Evaluation of Speech Quality (PESQ) [46] score. Like STOI, PESQ is obtained by 
comparing the separated speech with the corresponding clean speech. The STOI score ranges 
from 0 to 1 and PESQ score −0.5 to 4.5. Segmental SNR (segSNR) [47-48] is used to evaluate 
SNRs of every segment. 

 
4.2.1 Segmental SNR 

           

(11) 

where T represents for the number total frames, and ς  is a meaningful range of SNRs for 
human auditory. Segmental SNR, the ratio of the signal to its delta, is a time-domain metric 
representing for the extent of denoising. 

 
4.2.2 PESQ 

PESQ is an application guide for objective quality measurement based on 
recommendations P.862 proposed by International Telecommunication Union (ITU). It is an 
objective metric while being consistent with mean opinion score (MOS) [49]. We regular the 
voltage and time, then transform the human auditory, including to Bark domain, and use 
cognitive modeling and distance measure. As a main target of speech enhancement, PESQ 
measures the quality of the speech. 

 
4.2.3 STOI 

STOI was proposed recently to evaluate the intelligibility of speech. The two aspects of 
speech are the quality and intelligibility. STOI is more meaningful in low SNRs because it is 
not difficult to understand the content in high SNRs. But in low SNRs, the speech is destroyed 
heavily, so it is important to improve the intelligibility to make people understand it. 
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4.3. Results and Analysis 
To compare the performance in different situations, we train two sets of DNNs. The first set 

uses mixtures at variable SNRs and test at different SNRs. The second set uses mixtures of 
variable types of noises and test with different types of noise. For every experiment, we test the 
performance after adjusting the weight of normalization λ  and choose the best evaluation 
results to fill up the tables. 

 

4.3.1 Comparison between Various Systems in Mismatching SNRs 
For the first set, aiming at the SNR mismatching problem, we make 3 experiments. In the 

1st experiment, the DNN is trained with 5 dB mixtures, and tested with -5 dB mixtures. 8 types 
of noises are used to do the experiment separately and the results are showed in Table 1. In the 
2nd experiment, the DNN is trained with 0, 5 and 10 dB mixtures of the same type of noise, and 
tested by -5 dB mixtures. 6 types of noises are used to separately do the experiment and the 
results are showed in Table 2. In the 3rd experiment, the training mixtures are 10, 15 and 20 dB 
mixtures, and the testing mixtures are 5 dB mixtures of the same type of noise. Other 
experimental setups are exactly the same as the 2nd experiment and the results are showed in 
Table 3. 

 

Table 1. Performance Comparisons between Various Systems in Mismatching SNRs 
(5 dB training and -5 dB testing) 

System 
M109 Factory1 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.6790 1.0516 -6.0876 0.5355 1.0416 -6.1544 

baseline 0.7223 1.2686 -1.5862 0.5952 1.1233 -2.2387 

baseline+iVector 0.7265 1.2759 -1.6137 0.5934 1.0980 -2.6466 

Baseline+L2 0.7547 1.3578 -0.2009 0.6112 1.1475 -1.2613 

Baseline+iVector+ L2 0.7540 1.3486 -0.4217 0.6003 1.1283 -1.8179 

System 
Volvo F16 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.8881 1.2875 -5.3890 0.5707 1.0466 -6.2958 

baseline 0.8965 1.9560 5.5632 0.5794 1.0735 -5.2537 

baseline+iVector 0.8942 1.9538 5.3847 0.5830 1.0755 -5.2833 

Baseline+L2 0.9135 2.5192 8.5799 0.6726 1.2342 -1.9867 

Baseline+iVector+ L2 0.9076 2.3616 7.0332 0.6685 1.2079 -1.9892 

System 
Destroyer engine White 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.5711 1.0818 -6.3445 0.6048 1.0339 -6.3173 

baseline 0.6578 1.1831 -3.1487 0.6402 1.0446 -4.8384 

baseline+iVector 0.6686 1.1874 -3.1298 0.6455 1.0443 -5.0906 

Baseline+L2 0.6900 1.2911 -1.3051 0.6627 1.0514 -4.6073 

Baseline+iVector+ L2 0.6897 1.2183 -2.2845 0.6619 1.0484 -4.8821 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 12, NO. 10, October 2018                   4941 

System 
babble Destroyer ops 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.5482 1.0636 -6.1778 0.5950 1.0381 -6.2963 

baseline 0.5490 1.0821 -5.4004 0.5970 1.0773 -4.4975 

baseline+iVector 0.5470 1.0846 -5.4464 0.5954 1.0814 -4.5150 

Baseline+L2 0.5743 1.1126 -4.0502 0.6728 1.1783 -1.7490 

Baseline+iVector+ L2 0.5737 1.1085 -4.1008 0.6590 1.1424 -2.9623 
 

Table 2. Performance Comparisons between Various Systems in Mismatching SNRs 
(0, 5, 10 dB training and -5 dB testing) 

System 
M109 Factory1 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.6790 1.0516 -6.0876 0.5355 1.0416 -6.1544 

baseline 0.6795 1.1237 -3.2301 0.6179 1.1203 -2.1028 

baseline+iVector 0.6786 1.1226 -3.3632 0.6222 1.1228 -1.9644 

Baseline+L2 0.7449 1.3504 -0.4237 0.6223 1.1303 -1.9131 

Baseline+iVector+ L2 0.7434 1.3160 -0.7653 0.6223 1.1224 -2.2653 

System 
Volvo F16 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.8881 1.2875 -5.3890 0.5707 1.0466 -6.2958 

baseline 0.8964 1.9586 5.5892 0.5856 1.0761 -5.2650 

baseline+iVector 0.8938 1.9468 5.3933 0.5809 1.0721 -5.2639 

Baseline+L2 0.9135 2.3869 7.4149 0.6736 1.2023 -1.8900 

Baseline+iVector+ L2 0.9125 2.3729 7.3493 0.6712 1.1900 -2.1219 

System 
Destroyer engine White 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.5711 1.0818 -6.3445 0.6048 1.0337 -6.3173 

baseline 0.5765 1.0876 -5.4134 0.6003 1.0700 -4.2564 

baseline+iVector 0.5779 1.0858 -5.4668 0.6002 1.0682 -4.3443 

Baseline+L2 0.6724 1.2666 -1.1864 0.6838 1.1570 -1.3488 

Baseline+iVector+ L2 0.6665 1.2217 -2.0689 0.6765 1.1223 -1.4014 
 

Table 3. Performance Comparisons between Various Systems in Mismatching SNRs 
(10, 15, 20 dB training and 5 dB testing) 

System 
M109 Factory1 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.8532 1.2944 -1.0543 0.7702 1.1656 -1.1478 
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baseline 0.8492 1.4834 2.1093 0.7650 1.2157 -0.3740 

baseline+iVector 0.8508 1.4836 2.1526 0.7669 1.2189 -0.3498 

Baseline+L2 0.8824 1.9730 4.9517 0.8075 1.4327 2.0270 

Baseline+iVector+ L2 0.8796 1.8994 4.7737 0.8053 1.4193 2.0259 

System 
Volvo F16 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.9522 2.6021 8.9953 0.8013 1.1898 -1.3014 

baseline 0.9527 2.6823 10.0384 0.8085 1.2670 0.0305 

baseline+iVector 0.9508 2.6541 9.8302 0.8084 1.2610 -0.0981 

Baseline+L2 0.9589 3.0688 12.2628 0.8552 1.6563 2.5135 

Baseline+iVector+ L2 0.9579 3.0263 12.1459 0.8501 1.6165 2.4575 

System 
Destroyer engine White 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.8032 1.2496 -1.3883 0.8324 1.0853 -1.4292 

baseline 0.8110 1.2855 -0.5887 0.8847 1.7131 4.1640 

baseline+iVector 0.8050 1.2755 -0.7296 0.8844 1.7129 4.1624 

Baseline+L2 0.8624 1.6364 2.0512 0.8867 1.8480 4.6512 

Baseline+iVector+ L2 0.8543 1.6316 1.9150 0.8866 1.8469 4.6234 
 
Comparing the results in Section 4.3.1, we can reach the following conclusions. 
For the noise mismatch condition of SNRs in the 1st set, on all of these noises, L2 

regularization improves the performance consistently while the i-vector method does not. The 
improvements show that i-vectors cannot reflect the variation of the SNRs, while L2 
regularization can take adaptation information into account to make the original model adapt 
the test set well. And the decrease of i-vector system also shows that as the dimensional of 
features increases, it becomes harder to tune the network for adaptation. 

Table 1 shows the results under mismatch noise conditions, where the model is trained of 
the same type of noise under one higher SNR (5dB) and tested under one lower SNR (-5dB). 
Eight types of noises are used. Among them, babble noise performs worst, whose STOI score 
is less than 0.6 and PESQ score is around 1.1. It sounds hard to understand and bears signal 
distortion. This is probably because babble noise itself is speech noise which is similar to 
speech, the only difference lies in SNRs. When the environment of SNRs changes, the learned 
information doesn’t work in testing. So the performance decreases seriously. Besides babble 
noise, for m109 and volvo noises, the performance is better than other types of noises. 
Especially the Volvo noise, the STOI of which is greater than 0.9 and the PESQ is greater than 
2.5 and it sounds natural with little degradation and little noticeable noise. The m109 and 
Volvo noise are recorded in the tank in the speed of 30 km/h and the Volvo 340 car in the 
speed of 120 km/h respectively. So these two types of mechanical noises are more stationary 
than others. Adding L2 regularization, f16 and destroyer ops noises increase most: the STOI 
promotion percentages are 9.32% and 7.58%, and the PESQ promotion are both greater than 
0.1. This shows that the more unstationary, the L2 regularization works better. The 
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performance with L2 regularization on white noise is not so obvious, because the correlation of 
white noise spectrum is not so close. 

Table 2~3 show the under mismatch noise conditions, where the model is trained of the 
same type of noise under three higher SNR (0, 5, 10dB) and tested under one lower SNR 
(-5dB). In Table 2, STOI increases most on destroyer engine noise (9.59%), and the PESQ 
increases most on Volvo noises (0.43). So we can see on unstationary noises, L2 regularization 
can promote human intelligibility obviously and make people understand the speech content 
better. In the environment with stationary noise where the speech is not so bad and easier to 
understand, the L2 regularization can improve the quality of the speech, making the speech 
more natural and clearer. In Table 3, STOI increases most on destroyer engine noise (5.14%), 
and the PESQ increases most on m109 noise (0.49). From it we can get similar conclusions 
with it in Table 2. Comparing Table 2~3, we can see the promotion of the percentage of STOI 
is getting smaller as the SNR increases. The promotion of STOI in the 3rd experiment is 
smaller than that in the 2nd experiment. The trend of the other two criteria, PESQ and segSNR, 
is consistent with the STOI. 

In Table 1~3, the performance of Volvo noise is better than other noises in all the 
evaluation criteria. For example, in Table 1, the STOI of Volvo noise can reach more than 0.9 
while others can reach only 0.7 at most. It is probably because the Volvo noise is a rather 
stationary noise recorded in the car in the stable road. 
4.3.2 Comparison between Various Systems on Mismatching Noise Types 

For the second set, aiming at the multi-type noises problem, a DNN is trained with three 
types of noises, including Volvo, factory1 and f16 noises, and tested with m109 noise, 
destroyer engine noise， white noise and destroyer ops noise, whose results are showed in 
Table 4~7 respectively. 

In the second set, comparing Table 4~7, we use the same model trained by three types of 
noises to test other four types of noises separately. Among the test noises, factory1 noise, 
destroyer engine noise, Volvo noise, m109 noise and f16 noise have similarities in spectrum. 
Destroyer ops noise has the similar characteristic of these noises, and it contains human speech 
at the same time. White noise is a stationary noises acquired by sampling high-quality analog 
noise generator. So in the second set, three of them are chosen to train the DNN, while the 
other two, along with white noise and destroyer ops noise are chosen to test. 

 
Table 4. Performance Comparisons between Various Systems on Mismatching noise types 

(Volvo, factory1, f16 training and m109 testing) 

System 
-5dB 0dB 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.6790 1.0516 -6.0876 0.7714 1.1156 -3.9650 

baseline 0.6812 1.1200 -3.2957 0.7714 1.2492 -0.7065 

baseline+iVector 0.6821 1.1219 -3.2725 0.7733 1.2456 -0.7079 

Baseline+L2 0.7316 1.3515 -0.4835 0.8146 1.5958 1.8081 

Baseline+iVector+ L2 0.7319 1.3655 -0.2407 0.8150 1.6089 2.0690 

System 
5dB 10dB 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.8532 1.2944 -1.0543 0.9153 1.6010 2.3919 
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baseline 0.8882 1.8982 4.6374 0.9345 2.3742 7.6857 

baseline+iVector 0.8901 1.9740 5.1397 0.9349 2.4620 8.2688 

Baseline+L2 0.8910 2.0187 5.0738 0.9350 2.4681 8.0933 

Baseline+iVector+ L2 0.8913 2.0467 5.5093 0.9354 2.5365 8.5326 

System 
15dB 20dB 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.9587 2.0264 6.2021 0.9824 2.5266 10.2699 

baseline 0.9672 2.9138 11.1998 0.9849 3.3764 14.4958 

baseline+iVector 0.9672 3.0259 11.6788 0.9847 3.5200 14.9065 

Baseline+L2 0.9676 2.9902 11.5471 0.9851 3.4442 14.7668 

Baseline+iVector+ L2 0.9676 3.1184 12.0644 0.9851 3.5695 15.0562 
 

Table 5. Performance Comparisons between Various Systems on Mismatching noise types 
(Volvo, factory1, f16 training and destroyerengine testing) 

System 
-5dB 0dB 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.5711 1.0818 -6.3445 0.6906 1.1321 -4.2368 

baseline 0.5665 1.1265 -6.1808 0.6865 1.1425 -4.0871 

baseline+iVector 0.5681 1.1299 -6.1139 0.6908 1.1711 -4.1593 

Baseline+L2 0.6643 1.1760 -2.5357 0.8002 1.5327 0.4656 

Baseline+iVector+ L2 0.6724 1.2799 -1.0798 0.8054 1.1731 0.7320 

System 
5dB 10dB 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.8532 1.2944 -1.0543 0.8897 1.4805 2.0355 

baseline 0.7995 1.3332 -1.3552 0.8861 1.5686 1.8701 

baseline+iVector 0.8001 1.3358 -1.2231 0.8863 1.5718 1.9493 

Baseline+L2 0.8082 1.3157 -0.9444 0.9173 2.1726 6.1442 

Baseline+iVector+ L2 0.8485 1.5246 0.9305 0.9233 2.2403 6.4789 

System 
15dB 20dB 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.9474 1.8443 15.0103 0.9773 2.3532 9.8870 

baseline 0.9428 1.9198 5.2521 0.9743 2.4000 8.6020 

baseline+iVector 0.9437 1.9203 5.2022 0.9756 2.4038 8.7217 

Baseline+L2 0.9592 2.6586 8.9157 0.9812 3.1315 12.2010 

Baseline+iVector+ L2 0.9604 2.6710 9.2597 0.9813 3.1727 12.4489 
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Table 6. Performance Comparisons between Various Systems on Mismatching noise types 
(Volvo, factory1, f16 training and white testing) 

System 
-5dB 0dB 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.6048 1.0339 -6.3173 0.7222 1.0467 -4.2430 

baseline 0.5976 1.0473 -5.5414 0.7173 1.0577 -4.0562 

baseline+iVector 0.6008 1.0485 -5.3931 0.7217 1.0569 -4.2098 

Baseline+L2 0.6581 1.0576 -4.9445 0.7760 1.0860 -2.3037 

Baseline+iVector+ L2 0.6680 1.0642 -4.7134 0.7770 1.0969 -1.7046 

System 
5dB 10dB 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.8324 1.0853 -1.4292 0.9123 1.1944 1.9483 

baseline 0.8269 1.1181 -0.7996 0.8863 1.5686 1.8701 

baseline+iVector 0.8252 1.1191 -0.6143 0.8861 1.5718 1.9493 

Baseline+L2 0.8506 1.1548 0.0094 0.9206 1.3021 3.2077 

Baseline+iVector+ L2 0.8528 1.1636 0.1558 0.9211 1.3091 3.3096 

System 
15dB 20dB 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.9609 1.4305 5.7321 0.9844 1.8310 9.7921 

baseline 0.9571 1.4810 5.3151 0.9828 1.8717 8.6855 

baseline+iVector 0.9559 1.4839 5.4216 0.9814 1.8710 8.5745 

Baseline+L2 0.9644 1.5727 6.6155 0.9840 2.0207 10.2580 

Baseline+iVector+ L2 0.9644 1.5812 6.6251 0.9840 2.0431 10.3858 
 

Table 7. Performance Comparisons between Various Systems on Mismatching noise types 
(Volvo, factory1, f16 training and destroyerops testing) 

System 
-5dB 0dB 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.5950 1.0382 -6.2963 0.6959 1.0702 -4.1983 

baseline 0.5966 1.0769 -4.4769 0.6972 1.1058 -2.4657 

baseline+iVector 0.5969 1.0776 -4.4122 0.6984 1.1035 -2.5758 

Baseline+L2 0.6646 1.1533 -2.1086 0.7513 1.2477 -1.1689 

Baseline+iVector+ L2 0.6694 1.1563 -1.8750 0.7575 1.2606 -0.1320 

System 
5dB 10dB 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.7908 1.1738 -1.3151 0.8655 1.3907 2.1103 
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baseline 0.7904 1.3016 0.6779 0.8636 1.5674 3.6694 

baseline+iVector 0.7942 1.3064 0.5874 0.8669 1.5657 3.7479 

Baseline+L2 0.8299 1.5028 2.4903 0.8887 1.9423 5.9214 

Baseline+iVector+ L2 0.8333 1.5097 2.5930 0.8929 1.9672 6.2085 

System 
15dB 20dB 

STOI PESQ segSNR STOI PESQ segSNR 

mixture 0.9246 1.7892 5.8962 0.9640 2.3340 9.9634 

baseline 0.9233 1.9646 6.8020 0.9629 2.4723 9.8982 

baseline+iVector 0.9245 1.9693 6.8543 0.9637 2.4783 10.0437 

Baseline+L2 0.9360 2.4283 8.8215 0.9671 2.9086 12.0769 

Baseline+iVector+ L2 0.9371 2.4531 9.0679 0.9686 2.9543 12.0911 
 
For the noise mismatch condition of noise types in the 2nd set, on all of these types of noises, 

i-vectors and L2 separately improve all the three evaluation criteria. The range of promotion of 
L2 regularization is larger than that of i-vector method. And it can get better performance when 
combing these two methods. The factor contributed to this phenomenon is that i-vectors can 
reflect noise type information, but not so sensitive to SNRs. And L2 regularization, which 
brings about testing information, is still effective when the dimensional of features increases. 

Table 4~7 show the under mismatch noise conditions, where the model is trained of three 
different types of noises (Volvo, factory1 and f16 noises) under the same SNR and tested with 
another type of noise. Table 4~7 show the results of m109, destroyer engine, white and 
destroyer ops noises testing respectively, and experiments in six different SNRs (-5, 0, 5, 10, 
15 and 20dBs) are done in each of them. Volvo, factory1 and f16 noises are all mechanical 
noises, which are similar to m109 and destroyer engine noises. Comparing Table 4~7, m109 
noise in Table 4 performs best, in which the STOI can reach 0.7 in -5dB. This is because m109 
noise is a similar type with training noises and it is stationary than other testing noises. Before 
enhancement, destroyer engine mixture performs the worst, because the destroyer engine 
noise is an unstationary noise and the speech is destroyed heavily with it. White noise is 
different from mechanical noises, so when testing, the evaluation scores are even worse than 
mixture. But when adding i-vector and L2 regularization, it improves 7.04% at most. So this 
paper concludes that the test sets of similar noises perform better than white noise. Probably 
the similarities contribute to congenial DNN parameters, which is helpful for enhancement. 
Among the four types of noises, the STOI improves most on destroyer engine, whose 
promotion percentage is 11.89% at most, and the PESQ improves most on destroyer engine 
and destroyer ops, whose promotion are 0.75 and 0.49 respectively at most. So we can see the 
i-vector and L2 regularization are effective in improving both human intelligibility and speech 
quality, and it works better on extremely unstationary noises. Notably, destroyer ops noise 
itself contains mechanical noise and speech noise, making the improvement slightly worse 
than destroyer engine noise. The reason may lie in that i-vector contains the speaker and 
environment information, but destroyer ops noise itself includes human speech, so even 
advanced complementary-feature system is difficult to distinguish target speech from speech 
noise. In all the conclusions above, the trend of segSNR is consistent with the other two 
criteria. 
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In Table 4~7, the promotion of the percentage of STOI is getting smaller as the SNR 
increases on all the testing noise types, which is similar to the results in Section 4.3.1. For 
example, on m109 noise in Table 4, the largest promotion of percentage of STOI is 5.07% at 
-5dB, while it is less than 0.1% when the SNR is higher than 10dB. Note that in low SNR 
conditions, STOI improvement is more meaningful. The trend of the other two criteria, PESQ 
and segSNR, is consistent with the STOI. 

From the all the results above in 4.3, some conclusions can be summarized for i-vector and 
L2 systems. On all the situations above, the improvements decrease as the SNRs increase. 
Among all experiments, we find that more robust performance and better results appear when 
λ  ranges from 0.125 to 0.5. And the best value of λ  is often less than 0.2 for PESQ and 
segSNR. This is probably because for supervised adaptation system whose labels are 
relatively reliable, a smaller λ  means a larger proportion of adaptation data taking into 
account, leading to a better results. An exception is that on white noise, the best result appears 
when λ  is greater than 0.5, sometimes reaches 0.9. This is probably because the white noise is 
a stationary and weakly-relating noise and the regularization does not work well in this 
particular situation.  

5. Conclusion and Expectation 
To overcome the mismatching problem between training and testing sets in speech 

enhancement, we have presented an effective way to perform noise adaptation for neural 
network acoustic models. We proposed to use NaT in ideal mask estimation system based on 
DNN to bring environment information into account. We also test the performance of L2 
regularization, which using a small amount of adaptation data to adapt the network. The two 
methods can be combined to take advantages of both. 

There are several potential research directions. In this study, i-vector is extracted by MFCC 
and considered as an utterance-level feature. Future works we may use dynamic i-vectors to 
further improve the method. And we can try other CT methods for comparison. And 
supervised algorithms always face with a problem of lacking effective labels. Sometimes 
user-provided tags are incomplete, subjective and noisy. Under the circumstances, weakly 
supervised deep metric learning is proposed and has been applied in image understanding 
successfully[50-51]. This is worth considering and is hoped to lead to better performance in 
speech domain. 
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