• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.033 seconds

Multiple Plankton Detection and Recognition in Microscopic Images with Homogeneous Clumping and Heterogeneous Interspersion

  • Soh, Youngsung;Song, Jaehyun;Hae, Yongsuk
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.35-41
    • /
    • 2018
  • The analysis of plankton species distribution in sea or fresh water is very important in preserving marine ecosystem health. Since manual analysis is infeasible, many automatic approaches were proposed. They usually use images from in situ towed underwater imaging sensor or specially designed, lab mounted microscopic imaging system. Normally they assume that only single plankton is present in an image so that, if there is a clumping among multiple plankton of same species (homogeneous clumping) or if there are multiple plankton of different species scattered in an image (heterogeneous interspersion), they have a difficulty in recognition. In this work, we propose a deep learning based method that can detect and recognize individual plankton in images with homogeneous clumping, heterogeneous interspersion, or combination of both.

A Study of The Unmanned System Design of Occupant Number Counter of Inside A Vehicle for High Occupancy Vehicle Lanes (다인승 전용차로용 차량 내부 탑승 인원수 자동 확인 시스템 설계를 위한 연구)

  • Kim, Minyoung;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.49-51
    • /
    • 2018
  • 미국과 중국 그리고 일부 유럽국가에서는 교통혼잡 해결하기 위해 2인 이상 탑승한 차량만 운행 가능한 다인승 전용차로(HOV, High Occupancy Vehicle Lanes)를 도입하여 운영하고 있다. HOV를 도입한 도시에서는 나 홀로 운행 차량이 많이 감소 되어 교통 혼잡 문제를 조금이나마 해결 할 수 있었다. 현재 HOV에서는 차량 내부의 탑승 인원수를 확인하기 위한 시스템을 사용하고 있다. 기존의 해당 시스템은 HOV에 지나간 차량을 자동으로 적외선 카메라를 통해 촬영하여 사람이 직접 검수하는 방식이다. 기존 방식은 사람이 직접 검사하는 방식이라 이를 위한 많은 인력과 시간이 소모되는 점, 그리고 사람마다 확인한 결과가 다를 수 있는 등 여러 가지 단점이 있다. 본 논문에서는 기존 HOV의 차량 내부 탑승 인원 확인 기술의 여러 단점을 극복하기 위해 Deep Learning과 Computer Vision을 이용한 새로운 기술 설계를 위한 연구한 내용을 다룬다.

  • PDF

Deep Learning based Behavior Analysis System for High Rise Worker at Industrial Field. (딥러닝 기반 산업현장 고소작업자 행동분석 시스템)

  • Lee, Se-Hoon;Moon, Hyo-Jae;Yu, Jin-Hwan;Kim, Hyun-Woo;Yeom, Dae-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.01a
    • /
    • pp.51-52
    • /
    • 2018
  • 산업 현장에서 작업자의 잘못된 작업행동으로 인한 안전사고가 꾸준히 발생하고 있다. 현재는 관리자가 육안으로 작업자의 위험행동 여부를 관리하고 있지만, 모든 작업자를 관리자 한명이 관리하기에는 현실적으로 어려움이 있다. 본 논문에서는 이 문제를 해결하기 위해 고소 작업자의 안전벨트에 IoT 장치를 부착하여 행동 데이터를 클라우드에 업로드하고, 딥러닝을 통해 작업자 위험행동 여부를 분석한다. 분석한 결과를 관리자가 쉽게 모니터링 할 수 있도록 하여, 안전사고를 예방하도록 하는 시스템을 설계하였다.

  • PDF

System Design of Logistics Delivery Route Optimizing (물류 배송 최적화 시스템 디자인)

  • Song, Ha-yoon;Kim, Tae-Hyeon
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.571-574
    • /
    • 2018
  • 물류 배송은 우리 생활에 꼭 필요한 시스템 중 하나이다. 대한민국의 물류 시스템은 그 영토의 규모에 잘 부합되도록 체계적으로 정비되어 있으나, 배송 경로의 낭비 역시 존재한다. 본 논문에서는 Big Data, Deep Learning, IoT 와 같은 첨단 정보 기술을 이용하여 상기한 문제를 해결하고자 하였다. 물류의 특성을 고려하여 설계한 데이터 모델을 통신 기능과 위치 판별 기능이 포함된 IoT Device 를 통해 수집하고 NoSQL Database 상에 저장한다. 이후 Longest Common Subsequence Algorithm 을 이용한 Deep Learning 으로 수집 된 Data를 학습시킨다. 배송이 발생했을 때 학습된 Data 를 기반으로 해당 배송의 경로 분석을 실시하여 기존의 경로보다 시간적, 물질적 자원이 절약된 새로운 배송 경로를 IoT Device 를 통해 제시하고자 한다.

A Search Category Recommendation System Using Client-based Deep Learning (클라이언트 기반 딥러닝을 이용한 검색 카테고리 추천 시스템)

  • Ahn, Cheol-Yong;Park, JiSu;Shon, Jin Gon
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.687-690
    • /
    • 2019
  • 웹 사이트 사용자들은 자신의 취향에 맞춘 웹 사이트 개인화 서비스를 원한다. 이에 따라 관련 기업들은 웹 사이트의 회원가입을 통해 사용자들의 개인 정보를 관리하여 개인화 서비스를 지원하고 있다. 하지만 기업들의 개인 정보 유출 사고와 잘못된 기업 간 공유로 개인 정보보호 관리에 어려움이 있다는 문제점이 있다. 본 논문에서는 클라이언트 기반 딥러닝(Client-based Deep Learning)과 웹 브라우저 표준 데이터베이스 IndexedDB를 사용하여 검색 카테고리 추천 시스템을 구현한다.

Korean speech recognition based on grapheme (문자소 기반의 한국어 음성인식)

  • Lee, Mun-hak;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.5
    • /
    • pp.601-606
    • /
    • 2019
  • This paper is a study on speech recognition in the Korean using grapheme unit (Cho-sumg [onset], Jung-sung [nucleus], Jong-sung [coda]). Here we make ASR (Automatic speech recognition) system without G2P (Grapheme to Phoneme) process and show that Deep learning based ASR systems can learn Korean pronunciation rules without G2P process. The proposed model is shown to reduce the word error rate in the presence of sufficient training data.

Implementation of Moving Object Recognition based on Deep Learning (딥러닝을 통한 움직이는 객체 검출 알고리즘 구현)

  • Lee, YuKyong;Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.2
    • /
    • pp.67-70
    • /
    • 2018
  • Object detection and tracking is an exciting and interesting research area in the field of computer vision, and its technologies have been widely used in various application systems such as surveillance, military, and augmented reality. This paper proposes and implements a novel and more robust object recognition and tracking system to localize and track multiple objects from input images, which estimates target state using the likelihoods obtained from multiple CNNs. As the experimental result, the proposed algorithm is effective to handle multi-modal target appearances and other exceptions.

Development of parking lot recognition system using deep learning technology (딥러닝기법을 이용한 주차면 영상 인식 시스템 개발)

  • Yun, Tae-Jin;Kim, Hyun-seung;Chung, Yong-ju;Lee, Young-hun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.301-302
    • /
    • 2019
  • 본 연구에서는 주차장의 CCTV와 사용자의 스마트폰을 연동하여서 주차장의 전체적인 화면을 사용자의 스마트폰의 화면에 보여주며, YOLO 딥러닝 기법을 이용하여 주차된 차량 수를 산출하여서 전체적인 차량 댓수와 주차장소의 복잡도를 계산하여 사용자에게 제공하고자 한다. YOLO 딥러닝 기법은 CNN 기반으로 정확도 높은 객체 추출이 가능하고, 영역을 고려한 R-CNN 알고리즘을 사용하여 객체 분류에 필요한 경계 상자의 수를 줄일 수 있다. 한편, YOLO 딥러닝 기법을 이용하여 주차된 자동차를 인식하고, 주차면에 대한 영역에 대한 학습을 수행하여 주차된 자동차와 빈 주차면을 계산하여 제공한다. 주차장에 설치된 기존의 CCTV를 이용하여 저렴한 비용으로 딥러닝 기법을 CCTV 영상에 적용하여 주차장과 주차면 상황을 고객에게 실시간으로 알려주는 앱을 개발하였다.

  • PDF

Crack detection system for exterior wall in a drone camera image using YOLO deep learning technique (YOLO 딥러닝 기법을 이용한 드론카메라 영상 내 건물 외벽 균열 검출 시스템)

  • Yun, Tae-Jin;Jeon, Jin-Woo;Ko, Byung-Yoon;Woo, Hyun-Koo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.303-304
    • /
    • 2019
  • 본 논문에서는 자연재해나 노후화로 인해 많은 건물의 외벽에 균열(Crack)이 생기고 있고, YOLO 딥러닝 기법을 이용하여 텐서플로우(Tensorflow)기반 균열 데이터의 학습 과정을 거쳐 가중치 파일을 획득하고, 이를 기반으로 효율적으로 건물 관리를 할 수 있는 드론(Drone)에 장착된 카메라를 이용한 실시간 영상으로 건물 외벽 균열을 촬영하고 균열을 감지하여 사용자 모니터에 감지된 균열을 경계 상자를 통해 검출하고, 검출 사진과 위치를 기록하도록 시스템을 개발하였다.

  • PDF

Assessment of ASPECTS from CT Scans using Deep Learning

  • Khanh, Trinh Le Ba;Baek, Byung Hyun;Kim, Seul Kee;Do, Luu-Ngoc;Yoon, Woong;Park, Ilwoo;Yang, Hyung-Jeong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.5
    • /
    • pp.573-579
    • /
    • 2019
  • Alberta Stroke Program Early Computed Tomographic Scoring (ASPECTS) is a 10-point CT-scan score designed to quantify early ischemic changes in patients with acute ischemic stroke. However, an assessment of ASPECTS remains a challenge for neuroradiologists in stroke centers. The purpose of this study is to develop an automated ASPECTS scoring system that provides decision-making support by utilizing binary classification with three-dimensional convolutional neural network to analyze CT images. The proposed method consists of three main steps: slice filtering, contrast enhancement and image classification. The experiments show that the obtained results are very promising.