Acknowledgement
Supported by : 한국연구재단
DOI QR Code
물류 배송은 우리 생활에 꼭 필요한 시스템 중 하나이다. 대한민국의 물류 시스템은 그 영토의 규모에 잘 부합되도록 체계적으로 정비되어 있으나, 배송 경로의 낭비 역시 존재한다. 본 논문에서는 Big Data, Deep Learning, IoT 와 같은 첨단 정보 기술을 이용하여 상기한 문제를 해결하고자 하였다. 물류의 특성을 고려하여 설계한 데이터 모델을 통신 기능과 위치 판별 기능이 포함된 IoT Device 를 통해 수집하고 NoSQL Database 상에 저장한다. 이후 Longest Common Subsequence Algorithm 을 이용한 Deep Learning 으로 수집 된 Data를 학습시킨다. 배송이 발생했을 때 학습된 Data 를 기반으로 해당 배송의 경로 분석을 실시하여 기존의 경로보다 시간적, 물질적 자원이 절약된 새로운 배송 경로를 IoT Device 를 통해 제시하고자 한다.
Supported by : 한국연구재단