• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.027 seconds

Remote Distance Measurement from a Single Image by Automatic Detection and Perspective Correction

  • Layek, Md Abu;Chung, TaeChoong;Huh, Eui-Nam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.3981-4004
    • /
    • 2019
  • This paper proposes a novel method for locating objects in real space from a single remote image and measuring actual distances between them by automatic detection and perspective transformation. The dimensions of the real space are known in advance. First, the corner points of the interested region are detected from an image using deep learning. Then, based on the corner points, the region of interest (ROI) is extracted and made proportional to real space by applying warp-perspective transformation. Finally, the objects are detected and mapped to the real-world location. Removing distortion from the image using camera calibration improves the accuracy in most of the cases. The deep learning framework Darknet is used for detection, and necessary modifications are made to integrate perspective transformation, camera calibration, un-distortion, etc. Experiments are performed with two types of cameras, one with barrel and the other with pincushion distortions. The results show that the difference between calculated distances and measured on real space with measurement tapes are very small; approximately 1 cm on an average. Furthermore, automatic corner detection allows the system to be used with any type of camera that has a fixed pose or in motion; using more points significantly enhances the accuracy of real-world mapping even without camera calibration. Perspective transformation also increases the object detection efficiency by making unified sizes of all objects.

Deep Learning-Based Model for Classification of Medical Record Types in EEG Report (EEG Report의 의무기록 유형 분류를 위한 딥러닝 기반 모델)

  • Oh, Kyoungsu;Kang, Min;Kang, Seok-hwan;Lee, Young-ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.5
    • /
    • pp.203-210
    • /
    • 2022
  • As more and more research and companies use health care data, efforts are being made to vitalize health care data worldwide. However, the system and format used by each institution is different. Therefore, this research established a basic model to classify text data onto multiple institutions according to the type of the future by establishing a basic model to classify the types of medical records of the EEG Report. For EEG Report classification, four deep learning-based algorithms were compared. As a result of the experiment, the ANN model trained by vectorizing with One-Hot Encoding showed the highest performance with an accuracy of 71%.

Light-weight Gender Classification and Age Estimation based on Ensemble Multi-tasking Deep Learning (앙상블 멀티태스킹 딥러닝 기반 경량 성별 분류 및 나이별 추정)

  • Huy Tran, Quoc Bao;Park, JongHyeon;Chung, SunTae
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.1
    • /
    • pp.39-51
    • /
    • 2022
  • Image-based gender classification and age estimation of human are classic problems in computer vision. Most of researches in this field focus just only one task of either gender classification or age estimation and most of the reported methods for each task focus on accuracy performance and are not computationally light. Thus, running both tasks together simultaneously on low cost mobile or embedded systems with limited cpu processing speed and memory capacity are practically prohibited. In this paper, we propose a novel light-weight gender classification and age estimation method based on ensemble multitasking deep learning with light-weight processing neural network architecture, which processes both gender classification and age estimation simultaneously and in real-time even for embedded systems. Through experiments over various well-known datasets, it is shown that the proposed method performs comparably to the state-of-the-art gender classification and/or age estimation methods with respect to accuracy and runs fast enough (average 14fps) on a Jestson Nano embedded board.

A Methodology for Predicting Changes in Product Evaluation Based on Customer Experience Using Deep Learning (딥러닝을 활용한 고객 경험 기반 상품 평가 변화 예측 방법론)

  • An, Jiyea;Kim, Namgyu
    • Journal of Information Technology Services
    • /
    • v.21 no.4
    • /
    • pp.75-90
    • /
    • 2022
  • From the past to the present, reviews have had much influence on consumers' purchasing decisions. Companies are making various efforts, such as introducing a review incentive system to increase the number of reviews. Recently, as various types of reviews can be left, reviews have begun to be recognized as interesting new content. This way, reviews have become essential in creating loyal customers. Therefore, research and utilization of reviews are being actively conducted. Some studies analyze reviews to discover customers' needs, studies that upgrade recommendation systems using reviews, and studies that analyze consumers' emotions and attitudes through reviews. However, research that predicts the future using reviews is insufficient. This study used a dataset consisting of two reviews written in pairs with differences in usage periods. In this study, the direction of consumer product evaluation is predicted using KoBERT, which shows excellent performance in Text Deep Learning. We used 7,233 reviews collected to demonstrate the excellence of the proposed model. As a result, the proposed model using the review text and the star rating showed excellent performance compared to the baseline that follows the majority voting.

Classification of Gripping Movement in Daily Life Using EMG-based Spider Chart and Deep Learning (근전도 기반의 Spider Chart와 딥러닝을 활용한 일상생활 잡기 손동작 분류)

  • Lee, Seong Mun;Pi, Sheung Hoon;Han, Seung Ho;Jo, Yong Un;Oh, Do Chang
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.299-307
    • /
    • 2022
  • In this paper, we propose a pre-processing method that converts to Spider Chart image data for classification of gripping movement using EMG (electromyography) sensors and Convolution Neural Networks (CNN) deep learning. First, raw data for six hand gestures are extracted from five test subjects using an 8-channel armband and converted into Spider Chart data of octagonal shapes, which are divided into several sliding windows and are learned. In classifying six hand gestures, the classification performance is compared with the proposed pre-processing method and the existing methods. Deep learning was performed on the dataset by dividing 70% of the total into training, 15% as testing, and 15% as validation. For system performance evaluation, five cross-validations were applied by dividing 80% of the entire dataset by training and 20% by testing. The proposed method generates 97% and 94.54% in cross-validation and general tests, respectively, using the Spider Chart preprocessing, which was better results than the conventional methods.

Modified Deep Reinforcement Learning Agent for Dynamic Resource Placement in IoT Network Slicing

  • Ros, Seyha;Tam, Prohim;Kim, Seokhoon
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.17-23
    • /
    • 2022
  • Network slicing is a promising paradigm and significant evolution for adjusting the heterogeneous services based on different requirements by placing dynamic virtual network functions (VNF) forwarding graph (VNFFG) and orchestrating service function chaining (SFC) based on criticalities of Quality of Service (QoS) classes. In system architecture, software-defined networks (SDN), network functions virtualization (NFV), and edge computing are used to provide resourceful data view, configurable virtual resources, and control interfaces for developing the modified deep reinforcement learning agent (MDRL-A). In this paper, task requests, tolerable delays, and required resources are differentiated for input state observations to identify the non-critical/critical classes, since each user equipment can execute different QoS application services. We design intelligent slicing for handing the cross-domain resource with MDRL-A in solving network problems and eliminating resource usage. The agent interacts with controllers and orchestrators to manage the flow rule installation and physical resource allocation in NFV infrastructure (NFVI) with the proposed formulation of completion time and criticality criteria. Simulation is conducted in SDN/NFV environment and capturing the QoS performances between conventional and MDRL-A approaches.

A deep learning approach to permanent tooth germ detection on pediatric panoramic radiographs

  • Kaya, Emine;Gunec, Huseyin Gurkan;Aydin, Kader Cesur;Urkmez, Elif Seyda;Duranay, Recep;Ates, Hasan Fehmi
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.275-281
    • /
    • 2022
  • Purpose: The aim of this study was to assess the performance of a deep learning system for permanent tooth germ detection on pediatric panoramic radiographs. Materials and Methods: In total, 4518 anonymized panoramic radiographs of children between 5 and 13 years of age were collected. YOLOv4, a convolutional neural network (CNN)-based object detection model, was used to automatically detect permanent tooth germs. Panoramic images of children processed in LabelImg were trained and tested in the YOLOv4 algorithm. True-positive, false-positive, and false-negative rates were calculated. A confusion matrix was used to evaluate the performance of the model. Results: The YOLOv4 model, which detected permanent tooth germs on pediatric panoramic radiographs, provided an average precision value of 94.16% and an F1 value of 0.90, indicating a high level of significance. The average YOLOv4 inference time was 90 ms. Conclusion: The detection of permanent tooth germs on pediatric panoramic X-rays using a deep learning-based approach may facilitate the early diagnosis of tooth deficiency or supernumerary teeth and help dental practitioners find more accurate treatment options while saving time and effort

Two-Stage Deep Learning Based Algorithm for Cosmetic Object Recognition (화장품 물체 인식을 위한 Two-Stage 딥러닝 기반 알고리즘)

  • Jongmin Kim;Daeho Seo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.101-106
    • /
    • 2023
  • With the recent surge in YouTube usage, there has been a proliferation of user-generated videos where individuals evaluate cosmetics. Consequently, many companies are increasingly utilizing evaluation videos for their product marketing and market research. However, a notable drawback is the manual classification of these product review videos incurring significant costs and time. Therefore, this paper proposes a deep learning-based cosmetics search algorithm to automate this task. The algorithm consists of two networks: One for detecting candidates in images using shape features such as circles, rectangles, etc and Another for filtering and categorizing these candidates. The reason for choosing a Two-Stage architecture over One-Stage is that, in videos containing background scenes, it is more robust to first detect cosmetic candidates before classifying them as specific objects. Although Two-Stage structures are generally known to outperform One-Stage structures in terms of model architecture, this study opts for Two-Stage to address issues related to the acquisition of training and validation data that arise when using One-Stage. Acquiring data for the algorithm that detects cosmetic candidates based on shape and the algorithm that classifies candidates into specific objects is cost-effective, ensuring the overall robustness of the algorithm.

Design of Vehicle-mounted Loading and Unloading Equipment and Autonomous Control Method using Deep Learning Object Detection (차량 탑재형 상·하역 장비의 설계와 딥러닝 객체 인식을 이용한 자동제어 방법)

  • Soon-Kyo Lee;Sunmok Kim;Hyowon Woo;Suk Lee;Ki-Baek Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.79-91
    • /
    • 2024
  • Large warehouses are building automation systems to increase efficiency. However, small warehouses, military bases, and local stores are unable to introduce automated logistics systems due to lack of space and budget, and are handling tasks manually, failing to improve efficiency. To solve this problem, this study designed small loading and unloading equipment that can be mounted on transportation vehicles. The equipment can be controlled remotely and is automatically controlled from the point where pallets loaded with cargo are visible using real-time video from an attached camera. Cargo recognition and control command generation for automatic control are achieved through a newly designed deep learning model. This model is designed to be optimized for loading and unloading equipment and mission environments based on the YOLOv3 structure. The trained model recognized 10 types of palettes with different shapes and colors with an average accuracy of 100% and estimated the state with an accuracy of 99.47%. In addition, control commands were created to insert forks into pallets without failure in 14 scenarios assuming actual loading and unloading situations.

Artificial intelligence in colonoscopy: from detection to diagnosis

  • Eun Sun Kim;Kwang-Sig Lee
    • The Korean journal of internal medicine
    • /
    • v.39 no.4
    • /
    • pp.555-562
    • /
    • 2024
  • This study reviews the recent progress of artificial intelligence for colonoscopy from detection to diagnosis. The source of data was 27 original studies in PubMed. The search terms were "colonoscopy" (title) and "deep learning" (abstract). The eligibility criteria were: (1) the dependent variable of gastrointestinal disease; (2) the interventions of deep learning for classification, detection and/or segmentation for colonoscopy; (3) the outcomes of accuracy, sensitivity, specificity, area under the curve (AUC), precision, F1, intersection of union (IOU), Dice and/or inference frames per second (FPS); (3) the publication year of 2021 or later; (4) the publication language of English. Based on the results of this study, different deep learning methods would be appropriate for different tasks for colonoscopy, e.g., Efficientnet with neural architecture search (AUC 99.8%) in the case of classification, You Only Look Once with the instance tracking head (F1 96.3%) in the case of detection, and Unet with dense-dilation-residual blocks (Dice 97.3%) in the case of segmentation. Their performance measures reported varied within 74.0-95.0% for accuracy, 60.0-93.0% for sensitivity, 60.0-100.0% for specificity, 71.0-99.8% for the AUC, 70.1-93.3% for precision, 81.0-96.3% for F1, 57.2-89.5% for the IOU, 75.1-97.3% for Dice and 66-182 for FPS. In conclusion, artificial intelligence provides an effective, non-invasive decision support system for colonoscopy from detection to diagnosis.