• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.033 seconds

A Study on the Deep Learning-Based Tomato Disease Diagnosis Service (딥러닝기반 토마토 병해 진단 서비스 연구)

  • Jo, YuJin;Shin, ChangSun
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.48-55
    • /
    • 2022
  • Tomato crops are easy to expose to disease and spread in a short period of time, so late measures against disease are directly related to production and sales, which can cause damage. Therefore, there is a need for a service that enables early prevention by simply and accurately diagnosing tomato diseases in the field. In this paper, we construct a system that applies a deep learning-based model in which ImageNet transition is learned in advance to classify and serve nine classes of tomatoes for disease and normal cases. We use the input of MobileNet, ResNet, with a deep learning-based CNN structure that builds a lighter neural network using a composite product for the image set of leaves classifying tomato disease and normal from the Plant Village dataset. Through the learning of two proposed models, it is possible to provide fast and convenient services using MobileNet with high accuracy and learning speed.

Generating Pairwise Comparison Set for Crowed Sourcing based Deep Learning (크라우드 소싱 기반 딥러닝 선호 학습을 위한 쌍체 비교 셋 생성)

  • Yoo, Kihyun;Lee, Donggi;Lee, Chang Woo;Nam, Kwang Woo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.5
    • /
    • pp.1-11
    • /
    • 2022
  • With the development of deep learning technology, various research and development are underway to estimate preference rankings through learning, and it is used in various fields such as web search, gene classification, recommendation system, and image search. Approximation algorithms are used to estimate deep learning-based preference ranking, which builds more than k comparison sets on all comparison targets to ensure proper accuracy, and how to build comparison sets affects learning. In this paper, we propose a k-disjoint comparison set generation algorithm and a k-chain comparison set generation algorithm, a novel algorithm for generating paired comparison sets for crowd-sourcing-based deep learning affinity measurements. In particular, the experiment confirmed that the k-chaining algorithm, like the conventional circular generation algorithm, also has a random nature that can support stable preference evaluation while ensuring connectivity between data.

Cryptocurrency automatic trading research by using facebook deep learning algorithm (페이스북 딥러닝 알고리즘을 이용한 암호화폐 자동 매매 연구)

  • Hong, Sunghyuck
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.359-364
    • /
    • 2021
  • Recently, research on predictive systems using deep learning and machine learning of artificial intelligence is being actively conducted. Due to the development of artificial intelligence, the role of the investment manager is being replaced by artificial intelligence, and due to the higher rate of return than the investment manager, algorithmic trading using artificial intelligence is becoming more common. Algorithmic trading excludes human emotions and trades mechanically according to conditions, so it comes out higher than human trading yields when approached in the long term. The deep learning technique of artificial intelligence learns past time series data and predicts the future, so it learns like a human and can respond to changing strategies. In particular, the LSTM technique is used to predict the future by increasing the weight of recent data by remembering or forgetting part of past data. fbprophet, an artificial intelligence algorithm recently developed by Facebook, boasts high prediction accuracy and is used to predict stock prices and cryptocurrency prices. Therefore, this study intends to establish a sound investment culture by providing a new algorithm for automatic cryptocurrency trading by analyzing the actual value and difference using fbprophet and presenting conditions for accurate prediction.

Speech Recognition Model Based on CNN using Spectrogram (스펙트로그램을 이용한 CNN 음성인식 모델)

  • Won-Seog Jeong;Haeng-Woo Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.685-692
    • /
    • 2024
  • In this paper, we propose a new CNN model to improve the recognition performance of command voice signals. This method obtains a spectrogram image after performing a short-time Fourier transform (STFT) of the input signal and improves command recognition performance through supervised learning using a CNN model. After Fourier transforming the input signal for each short-time section, a spectrogram image is obtained and multi-classification learning is performed using a CNN deep learning model. This effectively classifies commands by converting the time domain voice signal to the frequency domain to express the characteristics well and performing deep learning training using the spectrogram image for the conversion parameters. To verify the performance of the speech recognition system proposed in this study, a simulation program using Tensorflow and Keras libraries was created and a simulation experiment was performed. As a result of the experiment, it was confirmed that an accuracy of 92.5% could be obtained using the proposed deep learning algorithm.

Predicting Dynamic Response of a Railway Bridge Using Transfer-Learning Technique (전이학습 기법을 이용한 철도교량의 동적응답 예측)

  • Minsu Kim;Sanghyun Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.1
    • /
    • pp.39-48
    • /
    • 2023
  • Because a railway bridge is designed over a long period of time and covers a large site, it involves various environmental factors and uncertainties. For this reason, design changes often occur, even if the design was thoroughly reviewed in the initial design stage. In particular, design changes of large-scale facilities, such as railway bridges, consume significant time and cost, and it is extremely inefficient to repeat all the procedures each time. In this study, a technique that can improve the efficiency of learning after design change was developed by utilizing the learning result before design change through transfer learning among deep-learning algorithms. For analysis, scenarios were created, and a database was built using a previously developed railway bridge deep-learning-based prediction system. The proposed method results in similar accuracy when learning only 1000 data points in the new domain compared with the 8000 data points used for learning in the old domain before the design change. Moreover, it was confirmed that it has a faster convergence speed.

Movie Box-office Prediction using Deep Learning and Feature Selection : Focusing on Multivariate Time Series

  • Byun, Jun-Hyung;Kim, Ji-Ho;Choi, Young-Jin;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.35-47
    • /
    • 2020
  • Box-office prediction is important to movie stakeholders. It is necessary to accurately predict box-office and select important variables. In this paper, we propose a multivariate time series classification and important variable selection method to improve accuracy of predicting the box-office. As a research method, we collected daily data from KOBIS and NAVER for South Korean movies, selected important variables using Random Forest and predicted multivariate time series using Deep Learning. Based on the Korean screen quota system, Deep Learning was used to compare the accuracy of box-office predictions on the 73rd day from movie release with the important variables and entire variables, and the results was tested whether they are statistically significant. As a Deep Learning model, Multi-Layer Perceptron, Fully Convolutional Neural Networks, and Residual Network were used. Among the Deep Learning models, the model using important variables and Residual Network had the highest prediction accuracy at 93%.

Real-Time Joint Animation Production and Expression System using Deep Learning Model and Kinect Camera (딥러닝 모델과 Kinect 카메라를 이용한 실시간 관절 애니메이션 제작 및 표출 시스템 구축에 관한 연구)

  • Kim, Sang-Joon;Lee, Yu-Jin;Park, Goo-man
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.269-282
    • /
    • 2021
  • As the distribution of 3D content such as augmented reality and virtual reality increases, the importance of real-time computer animation technology is increasing. However, the computer animation process consists mostly of manual or marker-attaching motion capture, which requires a very long time for experienced professionals to obtain realistic images. To solve these problems, animation production systems and algorithms based on deep learning model and sensors have recently emerged. Thus, in this paper, we study four methods of implementing natural human movement in deep learning model and kinect camera-based animation production systems. Each method is chosen considering its environmental characteristics and accuracy. The first method uses a Kinect camera. The second method uses a Kinect camera and a calibration algorithm. The third method uses deep learning model. The fourth method uses deep learning model and kinect. Experiments with the proposed method showed that the fourth method of deep learning model and using the Kinect simultaneously showed the best results compared to other methods.

Crack detection in concrete using deep learning for underground facility safety inspection (지하시설물 안전점검을 위한 딥러닝 기반 콘크리트 균열 검출)

  • Eui-Ik Jeon;Impyeong Lee;Donggyou Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.555-567
    • /
    • 2023
  • The cracks in the tunnel are currently determined through visual inspections conducted by inspectors based on images acquired using tunnel imaging acquisition systems. This labor-intensive approach, relying on inspectors, has inherent limitations as it is subject to their subjective judgments. Recently research efforts have actively explored the use of deep learning to automatically detect tunnel cracks. However, most studies utilize public datasets or lack sufficient objectivity in the analysis process, making it challenging to apply them effectively in practical operations. In this study, we selected test datasets consisting of images in the same format as those obtained from the actual inspection system to perform an objective evaluation of deep learning models. Additionally, we introduced ensemble techniques to complement the strengths and weaknesses of the deep learning models, thereby improving the accuracy of crack detection. As a result, we achieved high recall rates of 80%, 88%, and 89% for cracks with sizes of 0.2 mm, 0.3 mm, and 0.5 mm, respectively, in the test images. In addition, the crack detection result of deep learning included numerous cracks that the inspector could not find. if cracks are detected with sufficient accuracy in a more objective evaluation by selecting images from other tunnels that were not used in this study, it is judged that deep learning will be able to be introduced to facility safety inspection.

Deep Q-Learning Network Model for Container Ship Master Stowage Plan (컨테이너 선박 마스터 적하계획을 위한 심층강화학습 모형)

  • Shin, Jae-Young;Ryu, Hyun-Seung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.19-29
    • /
    • 2021
  • In the Port Logistics system, Container Stowage planning is an important issue for cost-effective efficiency improvements. At present, Planners are mainly carrying out Stowage planning by manual or semi-automatically. However, as the trend of super-large container ships continues, it is difficult to calculate an efficient Stowage plan with manpower. With the recent rapid development of artificial intelligence-related technologies, many studies have been conducted to apply enhanced learning to optimization problems. Accordingly, in this paper, we intend to develop and present a Deep Q-Learning Network model for the Master Stowage planning of Container ships.

Transfer Learning Using Convolutional Neural Network Architectures for Glioma Classification from MRI Images

  • Kulkarni, Sunita M.;Sundari, G.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.198-204
    • /
    • 2021
  • Glioma is one of the common types of brain tumors starting in the brain's glial cell. These tumors are classified into low-grade or high-grade tumors. Physicians analyze the stages of brain tumors and suggest treatment to the patient. The status of the tumor has an importance in the treatment. Nowadays, computerized systems are used to analyze and classify brain tumors. The accurate grading of the tumor makes sense in the treatment of brain tumors. This paper aims to develop a classification of low-grade glioma and high-grade glioma using a deep learning algorithm. This system utilizes four transfer learning algorithms, i.e., AlexNet, GoogLeNet, ResNet18, and ResNet50, for classification purposes. Among these algorithms, ResNet18 shows the highest classification accuracy of 97.19%.