• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.027 seconds

Gender Classification System Based on Deep Learning in Low Power Embedded Board (저전력 임베디드 보드 환경에서의 딥 러닝 기반 성별인식 시스템 구현)

  • Jeong, Hyunwook;Kim, Dae Hoe;Baddar, Wisam J.;Ro, Yong Man
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.6 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • While IoT (Internet of Things) industry has been spreading, it becomes very important for object to recognize user's information by itself without any control. Above all, gender (male, female) is dominant factor to analyze user's information on account of social and biological difference between male and female. However since each gender consists of diverse face feature, face-based gender classification research is still in challengeable research field. Also to apply gender classification system to IoT, size of device should be reduced and device should be operated with low power. Consequently, To port the function that can classify gender in real-world, this paper contributes two things. The first one is new gender classification algorithm based on deep learning and the second one is to implement real-time gender classification system in embedded board operated by low power. In our experiment, we measured frame per second for gender classification processing and power consumption in PC circumstance and mobile GPU circumstance. Therefore we verified that gender classification system based on deep learning works well with low power in mobile GPU circumstance comparing to in PC circumstance.

Handwritten One-time Password Authentication System Based On Deep Learning (심층 학습 기반의 수기 일회성 암호 인증 시스템)

  • Li, Zhun;Lee, HyeYoung;Lee, Youngjun;Yoon, Sooji;Bae, Byeongil;Choi, Ho-Jin
    • Journal of Internet Computing and Services
    • /
    • v.20 no.1
    • /
    • pp.25-37
    • /
    • 2019
  • Inspired by the rapid development of deep learning and online biometrics-based authentication, we propose a handwritten one-time password authentication system which employs deep learning-based handwriting recognition and writer verification techniques. We design a convolutional neural network to recognize handwritten digits and a Siamese network to compute the similarity between the input handwriting and the genuine user's handwriting. We propose the first application of the second edition of NIST Special Database 19 for a writer verification task. Our system achieves 98.58% accuracy in the handwriting recognition task, and about 93% accuracy in the writer verification task based on four input images. We believe the proposed handwriting-based biometric technique has potential for use in a variety of online authentication services under the FIDO framework.

Deep Learning-based Pet Monitoring System and Activity Recognition device

  • Kim, Jinah;Kim, Hyungju;Park, Chan;Moon, Nammee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.25-32
    • /
    • 2022
  • In this paper, we propose a pet monitoring system based on deep learning using an activity recognition device. The system consists of a pet's activity recognition device, a pet owner's smart device, and a server. Accelerometer and gyroscope data were collected from an Arduino-based activity recognition device, and the number of steps was calculated. The collected data is pre-processed and the amount of activity is measured by recognizing the activity in five types (sitting, standing, lying, walking, running) through a deep learning model that hybridizes CNN and LSTM. Finally, monitoring of changes in the activity, such as daily and weekly briefing charts, is provided on the pet owner's smart device. As a result of the performance evaluation, it was confirmed that specific activity recognition and activity measurement of pets were possible. Abnormal behavior detection of pets and expansion of health care services can be expected through data accumulation in the future.

Comparison of Deep Learning Algorithm in Bus Boarding Assistance System for the Visually Impaired using Deep Learning and Traffic Information Open API (딥러닝과 교통정보 Open API를 이용한 시각장애인 버스 탑승 보조 시스템에서 딥러닝 알고리즘 성능 비교)

  • Kim, Tae hong;Yeo, Gil Su;Jeong, Se Jun;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.388-390
    • /
    • 2021
  • This paper introduces a system that can help visually impaired people to board a bus using an embedded board with keypad, dot matrix, lidar sensor, NFC reader, a public data portal Open API system, and deep learning algorithm (YOLOv5). The user inputs the desired bus number through the NFC reader and keypad, and then obtains the location and expected arrival time information of the bus through the Open API real-time data through the voice output entered into the system. In addition, by displaying the bus number as the dot matrix, it can help the bus driver to wait for the visually impaired, and at the same time, a deep learning algorithm (YOLOv5) recognizes the bus number that stops in real time and detects the distance to the bus with a distance detection sensor such as lidar sensor.

  • PDF

Development of Methodology for Measuring Water Level in Agricultural Water Reservoir through Deep Learning anlaysis of CCTV Images (딥러닝 기법을 이용한 농업용저수지 CCTV 영상 기반의 수위계측 방법 개발)

  • Joo, Donghyuk;Lee, Sang-Hyun;Choi, Gyu-Hoon;Yoo, Seung-Hwan;Na, Ra;Kim, Hayoung;Oh, Chang-Jo;Yoon, Kwang-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.15-26
    • /
    • 2023
  • This study aimed to evaluate the performance of water level classification from CCTV images in agricultural facilities such as reservoirs. Recently, the CCTV system, widely used for facility monitor or disaster detection, can automatically detect and identify people and objects from the images by developing new technologies such as a deep learning system. Accordingly, we applied the ResNet-50 deep learning system based on Convolutional Neural Network and analyzed the water level of the agricultural reservoir from CCTV images obtained from TOMS (Total Operation Management System) of the Korea Rural Community Corporation. As a result, the accuracy of water level detection was improved by excluding night and rainfall CCTV images and applying measures. For example, the error rate significantly decreased from 24.39 % to 1.43 % in the Bakseok reservoir. We believe that the utilization of CCTVs should be further improved when calculating the amount of water supply and establishing a supply plan according to the integrated water management policy.

A Study on the Improvement of Heat Energy Efficiency for Utilities of Heat Consumer Plants based on Reinforcement Learning (강화학습을 기반으로 하는 열사용자 기계실 설비의 열효율 향상에 대한 연구)

  • Kim, Young-Gon;Heo, Keol;You, Ga-Eun;Lim, Hyun-Seo;Choi, Jung-In;Ku, Ki-Dong;Eom, Jae-Sik;Jeon, Young-Shin
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.26-31
    • /
    • 2018
  • This paper introduces a study to improve the thermal efficiency of the district heating user control facility based on reinforcement learning. As an example, it is proposed a general method of constructing a deep Q learning network(DQN) using deep Q learning, which is a reinforcement learning algorithm that does not specify a model. In addition, it is also introduced the big data platform system and the integrated heat management system which are specialized in energy field applied in processing huge amount of data processing from IoT sensor installed in many thermal energy control facilities.

Improving Wind Speed Forecasts Using Deep Neural Network

  • Hong, Seokmin;Ku, SungKwan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.327-333
    • /
    • 2019
  • Wind speed data constitute important weather information for aircrafts flying at low altitudes, such as drones. Currently, the accuracy of low altitude wind predictions is much lower than that of high-altitude wind predictions. Deep neural networks are proposed in this study as a method to improve wind speed forecast information. Deep neural networks mimic the learning process of the interactions among neurons in the brain, and it is used in various fields, such as recognition of image, sound, and texts, image and natural language processing, and pattern recognition in time-series. In this study, the deep neural network model is constructed using the wind prediction values generated by the numerical model as an input to improve the wind speed forecasts. Using the ground wind speed forecast data collected at the Boseong Meteorological Observation Tower, wind speed forecast values obtained by the numerical model are compared with those obtained by the model proposed in this study for the verification of the validity and compatibility of the proposed model.

Deep Learning based Computer-aided Diagnosis System for Gastric Lesion using Endoscope (위 내시경 영상을 이용한 병변 진단을 위한 딥러닝 기반 컴퓨터 보조 진단 시스템)

  • Kim, Dong-hyun;Cho, Hyun-chong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.928-933
    • /
    • 2018
  • Nowadays, gastropathy is a common disease. As endoscopic equipment are developed and used widely, it is possible to provide a large number of endoscopy images. Computer-aided Diagnosis (CADx) systems aim at helping physicians to identify possibly malignant abnormalities more accurately. In this paper, we present a CADx system to detect and classify the abnormalities of gastric lesions which include bleeding, ulcer, neuroendocrine tumor and cancer. We used an Inception module based deep learning model. And we used data augmentation for learning. Our preliminary results demonstrated promising potential for automatically labeled region of interest for endoscopy doctors to focus on abnormal lesions for subsequent targeted biopsy, with Az values of Receiver Operating Characteristic(ROC) curve was 0.83. The proposed CADx system showed reliable performance.

Prediction of Asphalt Pavement Service Life using Deep Learning (딥러닝을 활용한 일반국도 아스팔트포장의 공용수명 예측)

  • Choi, Seunghyun;Do, Myungsik
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.57-65
    • /
    • 2018
  • PURPOSES : The study aims to predict the service life of national highway asphalt pavements through deep learning methods by using maintenance history data of the National Highway Pavement Management System. METHODS : For the configuration of a deep learning network, this study used Tensorflow 1.5, an open source program which has excellent usability among deep learning frameworks. For the analysis, nine variables of cumulative annual average daily traffic, cumulative equivalent single axle loads, maintenance layer, surface, base, subbase, anti-frost layer, structural number of pavement, and region were selected as input data, while service life was chosen to construct the input layer and output layers as output data. Additionally, for scenario analysis, in this study, a model was formed with four different numbers of 1, 2, 4, and 8 hidden layers and a simulation analysis was performed according to the applicability of the over fitting resolution algorithm. RESULTS : The results of the analysis have shown that regardless of the number of hidden layers, when an over fitting resolution algorithm, such as dropout, is applied, the prediction capability is improved as the coefficient of determination ($R^2$) of the test data increases. Furthermore, the result of the sensitivity analysis of the applicability of region variables demonstrates that estimating service life requires sufficient consideration of regional characteristics as $R^2$ had a maximum of between 0.73 and 0.84, when regional variables where taken into consideration. CONCLUSIONS : As a result, this study proposes that it is possible to precisely predict the service life of national highway pavement sections with the consideration of traffic, pavement thickness, and regional factors and concludes that the use of the prediction of service life is fundamental data in decision making within pavement management systems.

Deep Learning based Rapid Diagnosis System for Identifying Tomato Nutrition Disorders

  • Zhang, Li;Jia, Jingdun;Li, Yue;Gao, Wanlin;Wang, Minjuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2012-2027
    • /
    • 2019
  • Nutritional disorders are one of the most common diseases of crops and they often result in significant loss of agricultural output. Moreover, the imbalance of nutrition element not only affects plant phenotype but also threaten to the health of consumers when the concentrations above the certain threshold. A number of disease identification systems have been proposed in recent years. Either the time consuming or accuracy is difficult to meet current production management requirements. Moreover, most of the systems are hard to be extended, only detect a few kinds of common diseases with great difference. In view of the limitation of current approaches, this paper studies the effects of different trace elements on crops and establishes identification system. Specifically, we analysis and acquire eleven types of tomato nutritional disorders images. After that, we explore training and prediction effects and significances of super resolution of identification model. Then, we use pre-trained enhanced deep super-resolution network (EDSR) model to pre-processing dataset. Finally, we design and implement of diagnosis system based on deep learning. And the final results show that the average accuracy is 81.11% and the predicted time less than 0.01 second. Compared to existing methods, our solution achieves a high accuracy with much less consuming time. At the same time, the diagnosis system has good performance in expansibility and portability.