• Title/Summary/Keyword: Deep Learning System

Search Result 1,738, Processing Time 0.026 seconds

Deep Learning Document Analysis System Based on Keyword Frequency and Section Centrality Analysis

  • Lee, Jongwon;Wu, Guanchen;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.1
    • /
    • pp.48-53
    • /
    • 2021
  • Herein, we propose a document analysis system that analyzes papers or reports transformed into XML(Extensible Markup Language) format. It reads the document specified by the user, extracts keywords from the document, and compares the frequency of keywords to extract the top-three keywords. It maintains the order of the paragraphs containing the keywords and removes duplicated paragraphs. The frequency of the top-three keywords in the extracted paragraphs is re-verified, and the paragraphs are partitioned into 10 sections. Subsequently, the importance of the relevant areas is calculated and compared. By notifying the user of areas with the highest frequency and areas with higher importance than the average frequency, the user can read only the main content without reading all the contents. In addition, the number of paragraphs extracted through the deep learning model and the number of paragraphs in a section of high importance are predicted.

Augmented Reality Service Based on Object Pose Prediction Using PnP Algorithm

  • Kim, In-Seon;Jung, Tae-Won;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.295-301
    • /
    • 2021
  • Digital media technology is gradually developing with the development of convergence quaternary industrial technology and mobile devices. The combination of deep learning and augmented reality can provide more convenient and lively services through the interaction of 3D virtual images with the real world. We combine deep learning-based pose prediction with augmented reality technology. We predict the eight vertices of the bounding box of the object in the image. Using the predicted eight vertices(x,y), eight vertices(x,y,z) of 3D mesh, and the intrinsic parameter of the smartphone camera, we compute the external parameters of the camera through the PnP algorithm. We calculate the distance to the object and the degree of rotation of the object using the external parameter and apply to AR content. Our method provides services in a web environment, making it highly accessible to users and easy to maintain the system. As we provide augmented reality services using consumers' smartphone cameras, we can apply them to various business fields.

Profane or Not: Improving Korean Profane Detection using Deep Learning

  • Woo, Jiyoung;Park, Sung Hee;Kim, Huy Kang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.305-318
    • /
    • 2022
  • Abusive behaviors have become a common issue in many online social media platforms. Profanity is common form of abusive behavior in online. Social media platforms operate the filtering system using popular profanity words lists, but this method has drawbacks that it can be bypassed using an altered form and it can detect normal sentences as profanity. Especially in Korean language, the syllable is composed of graphemes and words are composed of multiple syllables, it can be decomposed into graphemes without impairing the transmission of meaning, and the form of a profane word can be seen as a different meaning in a sentence. This work focuses on the problem of filtering system mis-detecting normal phrases with profane phrases. For that, we proposed the deep learning-based framework including grapheme and syllable separation-based word embedding and appropriate CNN structure. The proposed model was evaluated on the chatting contents from the one of the famous online games in South Korea and generated 90.4% accuracy.

Additional power conservation in 200W power plant with the application of high thermal profiled cooling liquid & improved deep learning based maximum power point tracking algorithm

  • Raj G. Chauhan;Saurabh K. Rajput;Himmat Singh
    • Advances in Energy Research
    • /
    • v.8 no.3
    • /
    • pp.185-202
    • /
    • 2022
  • This research work focuses to design and simulate a 200W solar power system with electrical power conservation scheme as well as thermal power conservation modeling to improve power extraction from solar power plant. Many researchers have been already designed and developed different methods to extract maximum power while there were very researches are available on improving solar power thermally and mechanically. Thermal parameters are also important while discussing about maximizing power extraction of any power plant. A specific type of coolant which have very high boiling point is proposed to be use at the bottom surface of solar panel to reduce the temperature of panel in summer. A comparison between different maximum power point tracking (MPPT) technique and proposed MPPT technique is performed. Using this proposed Thermo-electrical MPPT (TE-MPPT) with Deep Learning Algorithm model 40% power is conserved as compared to traditional solar power system models.

Underwater Acoustic Research Trends with Machine Learning: General Background

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.147-154
    • /
    • 2020
  • Underwater acoustics that is the study of the phenomenon of underwater wave propagation and its interaction with boundaries, has mainly been applied to the fields of underwater communication, target detection, marine resources, marine environment, and underwater sound sources. Based on the scientific and engineering understanding of acoustic signals/data, recent studies combining traditional and data-driven machine learning methods have shown continuous progress. Machine learning, represented by deep learning, has shown unprecedented success in a variety of fields, owing to big data, graphical processor unit computing, and advances in algorithms. Although machine learning has not yet been implemented in every single field of underwater acoustics, it will be used more actively in the future in line with the ongoing development and overwhelming achievements of this method. To understand the research trends of machine learning applications in underwater acoustics, the general theoretical background of several related machine learning techniques is introduced in this paper.

Motion Sickness Measurement and Analysis in Virtual Reality using Deep Neural Networks Algorithm (심층신경망 알고리즘을 이용한 가상환경에서의 멀미 측정 및 분석)

  • Jeong, Daekyo;Yoo, Sangbong;Jang, Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.1
    • /
    • pp.23-32
    • /
    • 2019
  • Cybersickness is a symptom of dizziness that occurs while experiencing Virtual Reality (VR) technology and it is presumed to occur mainly by crosstalk between the sensory and cognitive systems. However, since the sensory and cognitive systems cannot be measured objectively, it is difficult to measure cybersickness. Therefore, methodologies for measuring cybersickness have been studied in various ways. Traditional studies have collected answers to questionnaires or analyzed EEG data using machine learning algorithms. However, the system relying on the questionnaires lacks objectivity, and it is difficult to obtain highly accurate measurements with the machine learning algorithms. In this work, we apply Deep Neural Network (DNN) deep learning algorithm for objective cybersickness measurement from EEG data. We also propose a data preprocessing for learning and network structures allowing us to achieve high performance when learning EEG data with the deep learning algorithms. Our approach provides cybersickness measurement with an accuracy up to 98.88%. Besides, we analyze video characteristics where cybersickness occurs by examining the video segments causing cybersickness in the experiments. We discover that cybersickness happens even in unusually persistent changes in the darkness such as the light in a room keeps switching on and off.

Recommendation System of University Major Subject based on Deep Reinforcement Learning (심층 강화학습 기반의 대학 전공과목 추천 시스템)

  • Ducsun Lim;Youn-A Min;Dongkyun Lim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.9-15
    • /
    • 2023
  • Existing simple statistics-based recommendation systems rely solely on students' course enrollment history data, making it difficult to identify classes that match students' preferences. To address this issue, this study proposes a personalized major subject recommendation system based on deep reinforcement learning (DRL). This system gauges the similarity between students based on structured data, such as the student's department, grade level, and course history. Based on this information, it recommends the most suitable major subjects by comprehensively considering information about each available major subject and evaluations of the student's courses. We confirmed that this DRL-based recommendation system provides useful insights for university students while selecting their major subjects, and our simulation results indicate that it outperforms conventional statistics-based recommendation systems by approximately 20%. In light of these results, we propose a new system that offers personalized subject recommendations by incorporating students' course evaluations. This system is expected to assist students significantly in finding major subjects that align with their preferences and academic goals.

An Predictive System for urban gas leakage based on Deep Learning (딥러닝 기반 도시가스 누출량 예측 모니터링 시스템)

  • Ahn, Jeong-mi;Kim, Gyeong-Yeong;Kim, Dong-Ju
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.41-44
    • /
    • 2021
  • In this paper, we propose a monitoring system that can monitor gas leakage concentrations in real time and forecast the amount of gas leaked after one minute. When gas leaks happen, they typically lead to accidents such as poisoning, explosion, and fire, so a monitoring system is needed to reduce such occurrences. Previous research has mainly been focused on analyzing explosion characteristics based on gas types, or on warning systems that sound an alarm when a gas leak occurs in industrial areas. However, there are no studies on creating systems that utilize specific gas explosion characteristic analysis or empirical urban gas data. This research establishes a deep learning model that predicts the gas explosion risk level over time, based on the gas data collected in real time. In order to determine the relative risk level of a gas leak, the gas risk level was divided into five levels based on the lower explosion limit. The monitoring platform displays the current risk level, the predicted risk level, and the amount of gas leaked. It is expected that the development of this system will become a starting point for a monitoring system that can be deployed in urban areas.

  • PDF

Development of Low-Cost Vision-based Eye Tracking Algorithm for Information Augmented Interactive System

  • Park, Seo-Jeon;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.7 no.1
    • /
    • pp.11-16
    • /
    • 2020
  • Deep Learning has become the most important technology in the field of artificial intelligence machine learning, with its high performance overwhelming existing methods in various applications. In this paper, an interactive window service based on object recognition technology is proposed. The main goal is to implement an object recognition technology using this deep learning technology to remove the existing eye tracking technology, which requires users to wear eye tracking devices themselves, and to implement an eye tracking technology that uses only usual cameras to track users' eye. We design an interactive system based on efficient eye detection and pupil tracking method that can verify the user's eye movement. To estimate the view-direction of user's eye, we initialize to make the reference (origin) coordinate. Then the view direction is estimated from the extracted eye pupils from the origin coordinate. Also, we propose a blink detection technique based on the eye apply ratio (EAR). With the extracted view direction and eye action, we provide some augmented information of interest without the existing complex and expensive eye-tracking systems with various service topics and situations. For verification, the user guiding service is implemented as a proto-type model with the school map to inform the location information of the desired location or building.

Binary Classification of Hypertensive Retinopathy Using Deep Dense CNN Learning

  • Mostafa E.A., Ibrahim;Qaisar, Abbas
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.98-106
    • /
    • 2022
  • A condition of the retina known as hypertensive retinopathy (HR) is connected to high blood pressure. The severity and persistence of hypertension are directly correlated with the incidence of HR. To avoid blindness, it is essential to recognize and assess HR as soon as possible. Few computer-aided systems are currently available that can diagnose HR issues. On the other hand, those systems focused on gathering characteristics from a variety of retinopathy-related HR lesions and categorizing them using conventional machine-learning algorithms. Consequently, for limited applications, significant and complicated image processing methods are necessary. As seen in recent similar systems, the preciseness of classification is likewise lacking. To address these issues, a new CAD HR-diagnosis system employing the advanced Deep Dense CNN Learning (DD-CNN) technology is being developed to early identify HR. The HR-diagnosis system utilized a convolutional neural network that was previously trained as a feature extractor. The statistical investigation of more than 1400 retinography images is undertaken to assess the accuracy of the implemented system using several performance metrics such as specificity (SP), sensitivity (SE), area under the receiver operating curve (AUC), and accuracy (ACC). On average, we achieved a SE of 97%, ACC of 98%, SP of 99%, and AUC of 0.98. These results indicate that the proposed DD-CNN classifier is used to diagnose hypertensive retinopathy.