• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.024 seconds

Animal Fur Recognition Algorithm Based on Feature Fusion Network

  • Liu, Peng;Lei, Tao;Xiang, Qian;Wang, Zexuan;Wang, Jiwei
    • Journal of Multimedia Information System
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • China is a big country in animal fur industry. The total production and consumption of fur are increasing year by year. However, the recognition of fur in the fur production process still mainly relies on the visual identification of skilled workers, and the stability and consistency of products cannot be guaranteed. In response to this problem, this paper proposes a feature fusion-based animal fur recognition network on the basis of typical convolutional neural network structure, relying on rapidly developing deep learning techniques. This network superimposes texture feature - the most prominent feature of fur image - into the channel dimension of input image. The output feature map of the first layer convolution is inverted to obtain the inverted feature map and concat it into the original output feature map, then Leaky ReLU is used for activation, which makes full use of the texture information of fur image and the inverted feature information. Experimental results show that the algorithm improves the recognition accuracy by 9.08% on Fur_Recognition dataset and 6.41% on CIFAR-10 dataset. The algorithm in this paper can change the current situation that fur recognition relies on manual visual method to classify, and can lay foundation for improving the efficiency of fur production technology.

Collision Avoidance Sensor System for Mobile Crane (전지형 크레인의 인양물 충돌방지를 위한 환경탐지 센서 시스템 개발)

  • Kim, Ji-Chul;Kim, Young Jea;Kim, Mingeuk;Lee, Hanmin
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.62-69
    • /
    • 2022
  • Construction machinery is exposed to accidents such as collisions, narrowness, and overturns during operation. In particular, mobile crane is operated only with the driver's vision and limited information of the assistant worker. Thus, there is a high risk of an accident. Recently, some collision avoidance device using sensors such as cameras and LiDAR have been applied. However, they are still insufficient to prevent collisions in the omnidirectional 3D space. In this study, a rotating LiDAR device was developed and applied to a 250-ton crane to obtain a full-space point cloud. An algorithm that could provide distance information and safety status to the driver was developed. Also, deep-learning segmentation algorithm was used to classify human-worker. The developed device could recognize obstacles within 100m of a 360-degree range. In the experiment, a safety distance was calculated with an error of 10.3cm at 30m to give the operator an accurate distance and collision alarm.

A study on the detection of pedestrians in crosswalks using multi-spectrum (다중스펙트럼을 이용한 횡단보도 보행자 검지에 관한 연구)

  • kim, Junghun;Choi, Doo-Hyun;Lee, JongSun;Lee, Donghwa
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • The use of multi-spectral cameras is essential for day and night pedestrian detection. In this paper, a color camera and a thermal imaging infrared camera were used to detect pedestrians near a crosswalk for 24 hours at an intersection with a high risk of traffic accidents. For pedestrian detection, the YOLOv5 object detector was used, and the detection performance was improved by using color images and thermal images at the same time. The proposed system showed a high performance of 0.940 mAP in the day/night multi-spectral (color and thermal image) pedestrian dataset obtained from the actual crosswalk site.

GNSS NLOS Signal Classifier with Successive Correlation Outputs using CNN

  • Sangjae, Cho;Jeong-Hoon, Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • The problem of classifying a non-line-of-sight (NLOS) signal in a multipath channel is important to improve global navigation satellite system (GNSS) positioning accuracy in urban areas. Conventional deep learning-based NLOS signal classifiers use GNSS satellite measurements such as the carrier-to-noise-density ratio (CN_0), pseudorange, and elevation angle as inputs. However, there is a computational inefficiency with use of these measurements and the NLOS signal features expressed by the measurements are limited. In this paper, we propose a Convolutional Neural Network (CNN)-based NLOS signal classifier that receives successive Auto-correlation function (ACF) outputs according to a time-series, which is the most primitive output of GNSS signal processing. We compared the proposed classifier to other DL-based NLOS signal classifiers such as a multi-layer perceptron (MLP) and Gated Recurrent Unit (GRU) to show the superiority of the proposed classifier. The results show the proposed classifier does not require the navigation data extraction stage to classify the NLOS signals, and it has been verified that it has the best detection performance among all compared classifiers, with an accuracy of up to 97%.

Resistance Performance Simulation of Simple Ship Hull Using Graph Neural Network (그래프 신경망을 이용한 단순 선박 선형의 저항성능 시뮬레이션)

  • TaeWon, Park;Inseob, Kim;Hoon, Lee;Dong-Woo, Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.393-399
    • /
    • 2022
  • During the ship hull design process, resistance performance estimation is generally calculated by simulation using computational fluid dynamics. Since such hull resistance performance simulation requires a lot of time and computation resources, the time taken for simulation is reduced by CPU clusters having more than tens of cores in order to complete the hull design within the required deadline of the ship owner. In this paper, we propose a method for estimating resistance performance of ship hull by simulation using a graph neural network. This method converts the 3D geometric information of the hull mesh and the physical quantity of the surface into a mathematical graph, and is implemented as a deep learning model that predicts the future simulation state from the input state. The method proposed in the resistance performance experiment of simple hull showed an average error of about 3.5 % throughout the simulation.

Detecting Numeric and Character Areas of Low-quality License Plate Images using YOLOv4 Algorithm (YOLOv4 알고리즘을 이용한 저품질 자동차 번호판 영상의 숫자 및 문자영역 검출)

  • Lee, Jeonghwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2022
  • Recently, research on license plate recognition, which is a core technology of an intelligent transportation system(ITS), is being actively conducted. In this paper, we propose a method to extract numbers and characters from low-quality license plate images by applying the YOLOv4 algorithm. YOLOv4 is a one-stage object detection method using convolution neural network including BACKBONE, NECK, and HEAD parts. It is a method of detecting objects in real time rather than the previous two-stage object detection method such as the faster R-CNN. In this paper, we studied a method to directly extract number and character regions from low-quality license plate images without additional edge detection and image segmentation processes. In order to evaluate the performance of the proposed method we experimented with 500 license plate images. In this experiment, 350 images were used for training and the remaining 150 images were used for the testing process. Computer simulations show that the mean average precision of detecting number and character regions on vehicle license plates was about 93.8%.

Data anomaly detection for structural health monitoring using a combination network of GANomaly and CNN

  • Liu, Gaoyang;Niu, Yanbo;Zhao, Weijian;Duan, Yuanfeng;Shu, Jiangpeng
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.53-62
    • /
    • 2022
  • The deployment of advanced structural health monitoring (SHM) systems in large-scale civil structures collects large amounts of data. Note that these data may contain multiple types of anomalies (e.g., missing, minor, outlier, etc.) caused by harsh environment, sensor faults, transfer omission and other factors. These anomalies seriously affect the evaluation of structural performance. Therefore, the effective analysis and mining of SHM data is an extremely important task. Inspired by the deep learning paradigm, this study develops a novel generative adversarial network (GAN) and convolutional neural network (CNN)-based data anomaly detection approach for SHM. The framework of the proposed approach includes three modules : (a) A three-channel input is established based on fast Fourier transform (FFT) and Gramian angular field (GAF) method; (b) A GANomaly is introduced and trained to extract features from normal samples alone for class-imbalanced problems; (c) Based on the output of GANomaly, a CNN is employed to distinguish the types of anomalies. In addition, a dataset-oriented method (i.e., multistage sampling) is adopted to obtain the optimal sampling ratios between all different samples. The proposed approach is tested with acceleration data from an SHM system of a long-span bridge. The results show that the proposed approach has a higher accuracy in detecting the multi-pattern anomalies of SHM data.

KI-HABS: Key Information Guided Hierarchical Abstractive Summarization

  • Zhang, Mengli;Zhou, Gang;Yu, Wanting;Liu, Wenfen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4275-4291
    • /
    • 2021
  • With the unprecedented growth of textual information on the Internet, an efficient automatic summarization system has become an urgent need. Recently, the neural network models based on the encoder-decoder with an attention mechanism have demonstrated powerful capabilities in the sentence summarization task. However, for paragraphs or longer document summarization, these models fail to mine the core information in the input text, which leads to information loss and repetitions. In this paper, we propose an abstractive document summarization method by applying guidance signals of key sentences to the encoder based on the hierarchical encoder-decoder architecture, denoted as KI-HABS. Specifically, we first train an extractor to extract key sentences in the input document by the hierarchical bidirectional GRU. Then, we encode the key sentences to the key information representation in the sentence level. Finally, we adopt key information representation guided selective encoding strategies to filter source information, which establishes a connection between the key sentences and the document. We use the CNN/Daily Mail and Gigaword datasets to evaluate our model. The experimental results demonstrate that our method generates more informative and concise summaries, achieving better performance than the competitive models.

Build a Multi-Sensor Dataset for Autonomous Driving in Adverse Weather Conditions (열악한 환경에서의 자율주행을 위한 다중센서 데이터셋 구축)

  • Sim, Sungdae;Min, Jihong;Ahn, Seongyong;Lee, Jongwoo;Lee, Jung Suk;Bae, Gwangtak;Kim, Byungjun;Seo, Junwon;Choe, Tok Son
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.245-254
    • /
    • 2022
  • Sensor dataset for autonomous driving is one of the essential components as the deep learning approaches are widely used. However, most driving datasets are focused on typical environments such as sunny or cloudy. In addition, most datasets deal with color images and lidar. In this paper, we propose a driving dataset with multi-spectral images and lidar in adverse weather conditions such as snowy, rainy, smoky, and dusty. The proposed data acquisition system has 4 types of cameras (color, near-infrared, shortwave, thermal), 1 lidar, 2 radars, and a navigation sensor. Our dataset is the first dataset that handles multi-spectral cameras in adverse weather conditions. The Proposed dataset is annotated as 2D semantic labels, 3D semantic labels, and 2D/3D bounding boxes. Many tasks are available on our dataset, for example, object detection and driveable region detection. We also present some experimental results on the adverse weather dataset.

Non-invasive evaluation of embryo quality for the selection of transferable embryos in human in vitro fertilization-embryo transfer

  • Jihyun Kim;Jaewang Lee;Jin Hyun Jun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.4
    • /
    • pp.225-238
    • /
    • 2022
  • The ultimate goal of human assisted reproductive technology is to achieve a healthy pregnancy and birth, ideally from the selection and transfer of a single competent embryo. Recently, techniques for efficiently evaluating the state and quality of preimplantation embryos using time-lapse imaging systems have been applied. Artificial intelligence programs based on deep learning technology and big data analysis of time-lapse monitoring system during in vitro culture of preimplantation embryos have also been rapidly developed. In addition, several molecular markers of the secretome have been successfully analyzed in spent embryo culture media, which could easily be obtained during in vitro embryo culture. It is also possible to analyze small amounts of cell-free nucleic acids, mitochondrial nucleic acids, miRNA, and long non-coding RNA derived from embryos using real-time polymerase chain reaction (PCR) or digital PCR, as well as next-generation sequencing. Various efforts are being made to use non-invasive evaluation of embryo quality (NiEEQ) to select the embryo with the best developmental competence. However, each NiEEQ method has some limitations that should be evaluated case by case. Therefore, an integrated analysis strategy fusing several NiEEQ methods should be urgently developed and confirmed by proper clinical trials.