• Title/Summary/Keyword: Deep Learning System

Search Result 1,745, Processing Time 0.028 seconds

Trandemark detection system using deep learning-based algorithms in a metaverse environment (메타버스 환경에서의 딥 러닝 기반 알고리즘을 활용한 상표권 탐지 시스템)

  • Ji-Eun Lee;Hyung-Su Lee;Yong-Tae Shin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.1-4
    • /
    • 2024
  • 코로나 19(Covide-19)이후 가상과 현실이 융·복합 되어 사회·경제·문학활동과 가치 창출이 가능한 메타버스가 차세대 핵심산업으로 부상하고 있다. 이에 자사 보유 기술, IP(Intellectual Property) 등을 활용하여 메타버스 플랫폼을 구축하고자 하는 기업들이 증가하여 지식재산권을 둔 법적 이슈들이 새롭게 나타나고 있다. 따라서 본 논문에서는 상표권 침해를 보호하기 위하여 딥 러닝 기반 객체 탐지모델인 YOLOv5 모델을 활용한 메타버스 환경에서의 상표권 탐지 시스템을 제안한다.

  • PDF

Safety helmet wearing detection and notification system for construction site (공사현장 안전모 미착용 감지 및 알림 시스템)

  • Joong-Geun Seok;Mu-gyeong Gong;Min-Seok Kim;Dong-hyeon Heo;Jae-won Koo;Tae-jin Yun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.291-292
    • /
    • 2024
  • 국내의 산재 사고 사망 비율 중 대부분은 건설업이 차지하고 있으며 사망 원인 중 42.9%는 추락사가 차지하고 있다. 따라서 국내 사고 사망을 예방하기 위해서는 노동자의 생명을 지켜주는 안전 장비의 착용 여부가 중요하다. 본 논문에서는 객체 탐지에 사용되는 YOLO v4와 YOLO v4-TINY 알고리즘과 영상 처리에 사용되는 OpenCV를 이용하여 실시간 영상에서 안전모 미착용 인원을 감지하고 관리자에게 알려주는 시스템을 개발하였다. 이 시스템을 활용하여 건설 현장에서 현장 카메라로 안전모 미착용 인원을 실시간으로 검출하여 경고하므로써 작업자의 안전에 기여할 수 있다.

  • PDF

Currency Recognition System for Blind People (시각장애인을 위한 화폐 인식 시스템)

  • Dong-Jun Yoo;Sung-Jun Kim;Jun-Yeong Lee;Hyeon-Su Kang;Jun-Ho Son;Se-Jin Oh
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.257-258
    • /
    • 2024
  • 현재 시각장애인들이 현금을 사용하게 될 시 지폐가 얼마인지 확인할 방법이 없어 불편을 겪거나 금전적 사기를 당할 위험이 잦다. 한국은행에서는 이러한 사고를 막기 위해 점자 지폐를 만들어 발부하고 있지만 시각장애인 91%가 식별하지 못해 많은 불편을 겪고 있다. 본 논문에서는 딥러닝을 활용하여 화폐를 인식하고 TTS 기술을 사용하여 지폐의 값이 얼마인지 소리로 알려주는 시스템을 개발하였다. 지폐 인식을 위해 데이터를 직접 수집하여 YOLOv5 알고리즘을 활용하여 학습시킨 Weights 파일을 사용하였다. 이를 활용하여 시각장애인들은 더 안전하게 현금을 사용하고, 금전적인 문제를 예방할 수 있다.

  • PDF

Realtime Apple Quality Monitoring System Based on Deep Learning (딥러닝 기반의 사과 품질 실시간 모니터링 시스템)

  • Chan-seok Bae;Woo-hyuk Jung;Geun-jae Lee;Gyu-ryang Hong;Ji-hyun Kwon;Hongseok Yoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.297-298
    • /
    • 2024
  • 펜데믹, 전쟁 등을 포함한 국제 정세 변화에 따른 물류대란, 원자재가격 상승 및 환율 급등으로 인해 2023년 기준 대한민국의 물가는 크게 오르고 있는 추세이다. 물가 상승은 사업장의 인건비 부담 증가로 이어지고 있고 특히 노동 집약 산업인 농업 분야에서의 인건비 부담 문제는 더욱 심각한 실정이다. 외국인 근로자 고용이 대안이 될 수 있지만 인건비 절감 효과는 미미하기에 농업계 관계자들은 자동화 시스템 도입에 관심이 집중되고 있다. 따라서, 본 논문에서는 사과 분류 작업 자동화 체계의 핵심 요소에 해당하는 사과 품질 실시간 모니터링 시스템을 제안한다. 제안한 방식에서는 딥러닝 기반의 영상 분석 기법 및 무게 센서 데이터 분석을 통해 사과의 품질에 따른 등급 책정을 자동화 한다.

  • PDF

Improving Accuracy of Instance Segmentation of Teeth

  • Jongjin Park
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.280-286
    • /
    • 2024
  • In this paper, layered UNet with warmup and dropout tricks was used to segment teeth instantly by using data labeled for each individual tooth and increase performance of the result. The layered UNet proposed before showed very good performance in tooth segmentation without distinguishing tooth number. To do instance segmentation of teeth, we labeled teeth CBCT data according to tooth numbering system which is devised by FDI World Dental Federation notation. Colors for labeled teeth are like AI-Hub teeth dataset. Simulation results show that layered UNet does also segment very well for each tooth distinguishing tooth number by color. Layered UNet model using warmup trick was the best with IoU values of 0.80 and 0.77 for training, validation data. To increase the performance of instance segmentation of teeth, we need more labeled data later. The results of this paper can be used to develop medical software that requires tooth recognition, such as orthodontic treatment, wisdom tooth extraction, and implant surgery.

Development of a Port Worker Safety Monitoring System Using Swarm Drones and Deep Learning Technology (군집 드론과 딥러닝 기술을 활용한 항만 작업자 안전 모니터링 시스템 개발)

  • Tae-Hyeon Joe;Gwang-Ho Park;Gi-Beom Park;Jun-Yeong Jang;Si-Wu Kim;Sung-Tae Moon
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.1008-1009
    • /
    • 2024
  • 항만은 대규모 화물 처리와 물류 이동의 중심지로, 복잡한 작업 절차와 다수의 인력 및 장비가 투입되기 때문에 높은 수준의 안전 관리가 필요하다. 기존 항만 안전 시스템은 보안 인력과 고정형 CCTV 를 통해 감시가 이루어지나, 고정된 시야와 높은 인력 비용으로 인한 한계가 존재한다. 본 연구는 군집 드론을 활용하여 작업자의 안전 준수 여부를 실시간으로 식별·감지하는 시스템을 개발하고, 항만과 유사한 환경을 시뮬레이션을 구축하여 교차 검증 및 적용 가능성을 평가한다. 이를 통해 항만 안전 관리의 효율성을 극대화하고 작업자의 안전을 강화하는 새로운 방안을 제시한다.

Development of a Deep Learning-Based Real-Time Bus Number Recognition System for Transport-Disadvantaged People (딥러닝 기반 교통약자 실시간 버스 번호 인식 시스템 개발)

  • Ho-Ju Kwon;Dong-Woo Kang;Su-Hyun Shin;Tae-Hyung Kim
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.1100-1101
    • /
    • 2024
  • 저시력자와 노약자와 같은 교통약자들이 실시간으로 버스 번호를 인식할 수 있도록 딥러닝 모델(MobileNet, SSD)을 활용한 시스템을 개발하였다. 이 시스템은 MobileNet과 SSD 모델을 적용하여 모바일 환경에서도 실시간 객체 인식이 가능하며, 사용자는 인식된 정보를 음성으로 안내받는다. 성능 테스트에서 80% 이상의 인식 정확도를 기록했으며, 교통약자 대상 사용자 테스트 결과 긍정적인 피드백을 얻었다.

The Implementation of an Automated Stock Trading System based on A3C using Deep Reinforcement Learning (심층 강화학습을 이용한 A3C 기반의 자동 주식거래시스템 구현)

  • Sumin Ko;Sungjun Kim;EuiJu Yeo;Minkyung Choi;Kyuyoung Lee
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.950-951
    • /
    • 2024
  • 최근 금융업에서는 기계학습의 활용범위가 빠르게 확대되고 있다. 본 논문에서는 심층강화학습(DRL)을 활용한 A3C 알고리즘 기반 자동 주식거래시스템을 구현하고, 이를 적용한 결과 저점과 고점에서 우수한 의사결정 판단을 수행하여 높은 수익을 달성하는 것을 실험을 통해 입증하였다.

Development of an AI-Based Deep Learning Model for Dog Obesity Assessment and Customized Feed Recommendation System (AI 기반 딥러닝 모델을 활용한 반려견 비만도 평가 및 맞춤형 사료 추천 시스템 개발)

  • Yeo-Min Kim;Seung-Eun Chun;Chae-Rin Kim
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.922-923
    • /
    • 2024
  • 반려견의 비만도는 건강에 중대한 영향을 미치지만, 기존의 비만도 평가 방식은 전문가의 평가나 자가검진에 의존하여 접근성이 떨어지거나 정확도가 떨어지는 한계가 있었다. 본 연구는 AI 기반의 딥러닝 모델을 통해 강아지의 비만도를 보다 쉽게 평가할 수 있는 방법을 제안한다. 특히, 클래스 불균형 문제를 데이터 증강 기법으로 해결하여 모델의 성능을 향상시키고, 실시간으로 결과를 제공하는 앱 기반 솔루션을 구현하였다. 이 연구는 기존 모델과 달리 사용자가 촬영한 한 장의 이미지로 비만도를 예측하며, 사용자 친화적인 접근성을 강조한다.

Implementation of a Vehicle Route Detouring System During Disaster Situations Using Deep Learning Model and Satellite Imagery (딥러닝 모델과 위성사진을 이용한 재해 발생 시 차량 경로 우회 시스템 구현)

  • Jaewon Kim;Gyeongmin Kim;Sumin Lee;Jaeyong Lee;Byeongseok Ryu;Yonghyun Kwon;YoungGyun Kim
    • Annual Conference of KIPS
    • /
    • 2024.10a
    • /
    • pp.393-396
    • /
    • 2024
  • 본 논문에서는 자연·인적재해로 인한 건물, 도로 붕괴 시, 신속하고 안전한 이동을 위해 위성 이미지를 U-Net 딥러닝 학습모델과 A* 알고리즘을 활용하여 위험지역을 우회한 경로 제안 시스템을 구현하였다. 이를 실제 재해 상황에 도입하면 안전이 확보된 최단 거리를 제공함에 따라 신속한 대피와 구호 등 재난 관리에 효율성을 제공하여 인명 및 물적 피해를 줄일 수 있을 것으로 예상한다.