딥러닝 모델과 위성사진을 이용한 재해 발생 시 차량 경로 우회 시스템 구현

김재원¹, 김경민¹, 이수민², 이재용³, 류병석⁴, 권용현⁵ 김영균⁶ ¹강원대학교 문화예술·공과대학 기계의용·메카트로닉스공학과 ²강원대학교 경영대학 정보통계학과 ³강원대학교 IT대학 전기전자공학과 ⁴연세대학교 공과대학 화공생명공학과 ⁵한양대학교 공과대학 데이터사이언스학과 ⁶융합소프트웨어랩

kimju8193@gmail.com, kkmin1007@naver.com, voidsum61@gmail.com, 0530cia@naver.com, bsryu@yonsei.ac.kr, mrkyh380@hanyang.ac.kr, ygkim-2004@hanmail.net

Implementation of a Vehicle Route Detouring System During Disaster Situations Using Deep Learning Model and Satellite Imagery

Jaewon Kim¹, Gyeongmin Kim¹, Sumin Lee², Jaeyong Lee³, Byeongseok Ryu⁴, Yonghyun Kwon⁵, YoungGyun Kim⁶

¹Dept. of Mechanical & Biomedical, Mechatronics Engineering, Kangwon National University

Kangwon National University

²Dept. of Information Statistics, Kangwon National University

³Dept. of Electrical & Electronics Engineering, Kangwon National University

⁴Dept. of Chemical & Biomolecular Engineering, Yonsei University ⁵Dept. of Data Science, Hanyang University

⁶Convergence Software Lab.

약

요

본 논문에서는 자연·인적재해로 인한 건물, 도로 붕괴 시, 신속하고 안전한 이동을 위해 위성 이미지를 U-Net 딥러닝 학습모델과 A^{*} 알고리즘을 활용하여 위험지역을 우회한 경로 제안 시 스템을 구현하였다. 이를 실제 재해 상황에 도입하면 안전이 확보된 최단 거리를 제공함에 따 라 신속한 대피와 구호 등 재난 관리에 효율성을 제공하여 인명 및 물적 피해를 줄일 수 있을 것으로 예상한다.

1. 서론

유엔 재난위험경감사무국(UNDRR)이 발표한 보고서 '재난으로 인한 인적 비용(2000-2019)'에 따르면 2000년부터 2019년까지 전 세계에서 총 7,348건의 자 연재해가 발생하였고, 이 중 90.9%는 기후와 관련된 재난으로, 기후 관련 재난의 발생 건수는 3,656건에서 6,681건으로 두 배 가까이 증가하였다[1]. 이는 이상 기후 현상이 빈번해지고 있음을 시사한다. 또한, 재해 역학 연구 센터(CRED)에서 발표한 보고서 '2023년 재해 수치: 재해 영향의 중요한 해'에 따르면, 2023년 한 해 동안 전 세계적으로 약 9,310만 명이 홍수, 지 진, 태풍 등 자연재해로 피해를 입었으며 이로 인한 경제적 손실은 2,027억\$에 달하는 것으로 나타났다 [2]. 증가하는 자연재해와 그에 따른 직·간접적 피해를 줄이기 위해서는 효율적인 재난관리가 필요하다[3]. 기 존의 자연재해 피해 평가 시스템은 주로 현장 조사와 수작업에 의존하여 시간과 비용이 많이 소요되며, 위 힘지역 접근에 어려운 문제점도 존재한다[4]. 이러한 효율성 문제를 보완한 위성사진을 활용해 재해 지역의 건물을 분석한 사례가 있다[5]. 해당 연구사례에서는 재해로 인해 손상된 하나의 건물 안에 두 가지 이상의 피해율이 탐지되는 단점이 있으며, 도로에 대한 정보 는 담고 있지 않아 대피, 물품 수송 등 실제 상황에서 직접적인 기술 활용이 불가능하다는 한계점이 있다. 이러한 한계점을 보완하고자 본 논문은 건물의 손상률 을 분석하고, 안전이 확보된 최단 경로 추천 시스템을 제안한다. 위성사진과 딥러닝을 이용하여 자연재해로 파괴된 건물과 도로를 식별하고, 건물이 파괴되거나 2 차 붕괴가 우려되는 지역을 우회한 최단 경로를 제시 함에 따라 신속한 구호 물품의 전달, 안전한 피난 경 로 설정에 중요한 정보를 제공할 수 있을 것이다.

2. 시스템 설계 및 구현

시스템은 위성사진(Input Data)과 Truth Mask 이미 지(Target Data)를 딥러닝하여 도로 검출 모델과 건물 검출 모델을 생성한 후, 도로와 건물을 검출한다. 그다 음 색상 후처리를 통해 손상된 건물 근처를 필터링한 다. 마지막으로, 필터링된 이미지에서 출발지점과 도착 지점을 지정하면, 이용 가능한 도로에서의 최단 경로 가 위성사진에 투영된다(그림 1).

2.1 U-Net 아키텍처

Semantic Segmentation은 검출하고자 하는 영역 또 는 대상을 해당하는 클래스로 분류하는 것이 주된 목 표이며, 인공신경망으로 Segmentation을 수행하면 서 로 다른 지형과 해상도임에도 높은 정확도를 유지할 수 있다는 장점이 있다[6]. 이를 바탕으로 본 연구에서 는 복잡한 도로와 건물의 클래스를 분류하기 위해 해 상도를 유지하며 각 픽셀 단위로 클래스를 할당해줄 수 있는 장점을 가진 U-Net 모델을 사용하였다[7-8]. U-Net 모델은 인코더-디코더 기반의 모델이며 전반 적인 특징은 각 4회의 다운샘플링 및 업샘플링을 통해 모델을 학습한다(그림 2). 왼쪽 네트워크는 수축경로로 입력되는 이미지의 Context를 파악하기 위해 다운샘 플링을 진행한다. 오른쪽 네트워크는 확장경로로 업샘 플링을 사용하여 수축경로로부터 제공된 특징 맵을 결 합하며 최종적으로 마지막 레이어에서 비선형 예측을 수행하기 위해 1 x 1 컨볼루션 커널을 추가해 이미지 를 처리한다[8-9].

2.1.1 데이터셋 구성

데이터셋은 표 1과 같이 Deepglobe에서 1,500 × 1,500 크기의 도로 데이터셋 6,266장과 xView2에서 1,024 × 1,024 크기의 건물 데이터셋 5,598장을 수집 하였다[10-11]. 건물 데이터셋은 자연재해에 대한 피해를 입기 전(Pre-Disaster)과 후(Post-Disaster)의 2,799쌍으로 구성되어 있다. 학습에 대한 데이터는 학 습(Train)데이터와 검증(Validation)데이터를 8:2 비율 로 나누어주었으며, Shift, Rotation, Shear, Zoom, Flip 등 다양한 기법의 Data Augmentation을 적용해 주었다.

〈표 1〉 데이터 구성 정보

Data specification	Contents
Data provision	Deepglobe, xView2
Data format	Image, Labeling
Number of data	6266 / 5598
Input size	256 x 256
Data Split	Train: 80% / Valid :20%

2.1.2 훈련 개요

CPU(AMD Ryzen 7 5700x 8-core processor 3.4Ghz)와 GPU(NVIDIA GeForce RTX 3060 12GB), RAM(32GB)의 하드웨어 환경을 사용하여 모 델을 훈련하였다. Segmentation 수행 시, 각 픽셀의 클래스 할당을 위해 Cross Entropy를 Loss Function 으로 선택했으며, 초기 학습률 설정에 대한 민감도가 낮고 학습이 안정적인 Adam Optimizer를 사용하였다. 마지막으로 ReLU 활성화 함수를 사용하는 U-Net의 학습 성능을 안정적으로 수렵시키기 위해, Kernel Initializer는 He Normal로 선택했다.

표 2는 학습이 완료된 모델의 성능 평가 지표이다. 평가지표는 정확도(Accuracy), 정밀도(Precision), 재현 율(Recall)을 활용하였으며, 각 지표의 관계식은 아래 의 식 1, 2, 3과 같다. 이때 각 계수는 다음을 의미한 다. TP(True Positive), TN(True Negative), FP(False Positive, FN(False Negative)

$$Accuracy(\%) = \frac{TP + TN}{TP + TN + FP + FN} \quad (4) 1$$

$$Precision(\%) = \frac{TP}{TP + TN} \qquad (\measuredangle 2)$$

$$\operatorname{Recall}(\%) = \frac{TP}{TP + FN} \qquad (\cancel{4} 3)$$

⟨표 2⟩ 도로와 건물의 모델 성능 평가 지표 점수

Class	Pixel Accuracy	Precision	Recall
Road	0.97	0.74	0.61
Building	0.98	0.73	0.85

아래 그림 3은 Threshold를 0부터 1까지 변화시켜 얻어진 Precision과 Recall의 결과에 대한 곡선이며 도 로와 건물의 평균 정밀도(Average Precision)도 함께 나타내 주었다. 각 클래스에 대한 평균 정밀도는 도로 0.7418, 건물 0.84이다.

(그림 3) 도로와 건물의 Recall-Precision 곡선

2.1.3 모델 예측 결과

도로와 건물에 대해 학습한 모델로 예측한 결과로 마 스크 이미지가 생성되었다. 그림 4는 최단경로를 찾기 위해 위성 이미지에서 도로만 검출한 결과이며, 그림 5는 재해 전 건물 검출 결과, 그림 6은 재해 후 건물 검출 결과로 그림 5와 비교하여 손상 정도를 알기 위 해 생성한 검출 결과이다.

(그림 4) 도로 모델 예측 결과

그림 7은 손상된 건물의 손상률을 시각적으로 확인할 수 있도록 처리한 Damage mask이다. 그림 5와 그림 6의 Predicted Mask들을 픽셀 비교하여 재해 전과 후 의 마스크 이미지에서 픽셀 차이가 있다면 건물이 손 상된 것으로 간주하고, 손상률이 10%이상이라면 녹색, 30%이상이라면 황색, 80%이상이라면 적색으로 표시 하여서 한 건물당 한 가지의 클래스를 부여하였다.

(그림 5) 건물 모델 예측 결과(Pre-disaster)

(그림 6) 건물 모델 예측 결과(Post-disaster)

(그림 7) 손상 건물 색상 표시

2.2 최단 경로 추천 시스템 구현

최단 경로를 찾기 위해 'Mnih(2013)'에서 제공한 36 km² 면적의 이미지에서 Dijkstra, Bellman-Ford, A* 알고리즘을 테스트했으며 표 3과 같이 각각의 알고리 즘에 대한 경로 탐색 시간을 측정하였다[12]. 이때 A*

알고리즘을 적용하였을 경우 가장 우수한 결과가 나타 난 것을 알 수 있었다(그림 8).

Algorithm	Dijkstra	Bellman-Ford	A*
Elapsed Time	526.7076 sec	10.1477 sec	9.9286 sec

(그림 8) 두 점 사이의 최단 경로

3. 결과 및 결론

(그림 9) 도로, 건물 통합 마스크

위의 그림 9와 같이 도로와 건물이 모두 표시된 마스 킹 이미지에서 황색(중대 피해), 적색(파괴)으로 표시 된 건물의 일정 범위 내 도로는 배제한 상태에서 최단 경로를 탐색한다. 아래 그림 10.a는 최단 경로이며, 그 림 10.b는 우회 최단 경로, 그림 10.c는 최종 결과 이 미지이다.

(그림 10) 우회 경로 탐색 결과

본 논문에서 제안하는 시스템을 활용할 경우, 홍수, 지진, 전쟁 등의 자연·인적재해 발생 시 재난 관리 측 면에서 큰 기여를 기대할 수 있다. 재해 발생 시 안전 한 피난 경로를 제공함으로써 인명 피해를 최소화하 고, 구호 물품 제공 및 복구 작업을 위한 물류 수송의 시간과 비용을 절감할 수 있다. 더 나아가, 본 시스템 의 추후 연구를 통해 건물 손상률뿐만 아니라 건물 밀 집도를 고려한 우회경로, 특정 지역을 거치는 우회경 로에 관한 연구로 군사적 전략 용도, 재난시 물류 업 체의 원활한 물자 운송 경로설정 등 더욱 복잡한 임무 에 활용할 수 있을 것으로 예상한다.

참고문헌

[1] United Nations Office for Disaster Risk Reduction(UNDRR). (2021). Human cost of disasters: Overview ofthe last 20 years (2000-2019). Retrieved fromhttps://www.undrr.org/publication/human-cost-disasters-overview-last-20-years-2000-2019[2] Centre for Research on the Epidemiology of Disasters(CRED). (2023). 2023 Disasters in Numbers: ASignificant Year of Disaster Impact. Retrieved fromhttps://reliefweb.int/report/world/2023-disasters-numbers[3] 김태훈, 윤준희(한국건설기술연구원 미래융합연구본부).대형복합재난의 효율적 관리를 위한 제도개선방안 연구.한국산학기술학회논문지 = Journal of the KoreaAcademia-Industrial cooperation Society, v.19 no.5,2018 년.

[4] 황승호, 김계현, 이미란. (2015-09-17). 재해지역 피해조사를 위한 중·저해상도 위성영상을 활용한 피해탐지 프로세스 구축에 관한 연구. 대한공간정보학회 학술대회, 서울.

[5] Deng, Liwei, and Yue Wang. "Post-disaster building damage assessment based on improved U-Net." Scientific reports 12.1 (2022): 15862.

[6] Garcia-Garcia, Alberto, et al. "A review on deep learning techniques applied to semantic segmentation." arXiv preprint arXiv:1704.06857 (2017).

[7] W. Wang, N. Yang, Y. Zhang, F. Wang, T. Cao, and P. Eklund, "A review of road extraction from remote sensing images," Journal of Traffic and Transportation Engineering (English Edition), vol. 3, no. 3, pp. 271–282, 2016.

[8] S. Tian, X. Zhang, J. Tian, and Q. Sun, "Random forest classification of wetland landcovers from multi-sensor data in the arid region of Xinjiang, China," Remote Sensing, vol. 8, no. 11, p. 954, 2016.

[9] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587.

[10] DeepGlobe. (n.d.). DeepGlobe 2018: Satellite challenge. DeepGlobe. http://deepglobe.org/

[11] Xview2. (n.d.). Xview2: Building damage assessment challenge. Xview2. https://xview2.org/

[12] Mnih, V. (2013). Machine learning for aerial image labeling [Doctoral dissertation, University of Toronto]. University of Toronto.

https://www.cs.toronto.edu/~vmnih/data/