• Title/Summary/Keyword: Deep Learning Approaches

Search Result 275, Processing Time 0.024 seconds

Numerical, Machine Learning and Deep-Learning based Framework for Weather Prediction

  • Bhagwati Sharan;Mohammad Husain;Mohammad Nadeem Ahmed;Anil Kumar Sagar;Arshad Ali;Ahmad Talha Siddiqui;Mohammad Rashid Hussain
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.63-76
    • /
    • 2024
  • Weather forecasting has become a very popular topic nowadays among researchers because of its various effects on global lives. It is a technique to predict the future, what is going to happen in the atmosphere by analyzing various available datasets such as rain, snow, cloud cover, temperature, moisture in the air, and wind speed with the help of our gained scientific knowledge i.e., several approaches and set of rules or we can say them as algorithms that are being used to analyze and predict the weather. Weather analysis and prediction are required to prevent nature from natural losses before it happens by using a Deep Learning Approach. This analysis and prediction are the most challenging task because of having multidimensional and nonlinear data. Several Deep Learning Approaches are available: Numerical Weather Prediction (NWP), needs a highly calculative mathematical equation to gain the present condition of the weather. Quantitative precipitation nowcasting (QPN), is also used for weather prediction. In this article, we have implemented and analyzed the various distinct techniques that are being used in data mining for weather prediction.

LDCSIR: Lightweight Deep CNN-based Approach for Single Image Super-Resolution

  • Muhammad, Wazir;Shaikh, Murtaza Hussain;Shah, Jalal;Shah, Syed Ali Raza;Bhutto, Zuhaibuddin;Lehri, Liaquat Ali;Hussain, Ayaz;Masrour, Salman;Ali, Shamshad;Thaheem, Imdadullah
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.463-468
    • /
    • 2021
  • Single image super-resolution (SISR) is an image processing technique, and its main target is to reconstruct the high-quality or high-resolution (HR) image from the low-quality or low-resolution (LR) image. Currently, deep learning-based convolutional neural network (CNN) image super-resolution approaches achieved remarkable improvement over the previous approaches. Furthermore, earlier approaches used hand designed filter to upscale the LR image into HR image. The design architecture of such approaches is easy, but it introduces the extra unwanted pixels in the reconstructed image. To resolve these issues, we propose novel deep learning-based approach known as Lightweight deep CNN-based approach for Single Image Super-Resolution (LDCSIR). In this paper, we propose a new architecture which is inspired by ResNet with Inception blocks, which significantly drop the computational cost of the model and increase the processing time for reconstructing the HR image. Compared with the other state of the art methods, LDCSIR achieves better performance in terms of quantitively (PSNR/SSIM) and qualitatively.

Machine Learning Approaches to Corn Yield Estimation Using Satellite Images and Climate Data: A Case of Iowa State

  • Kim, Nari;Lee, Yang-Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.383-390
    • /
    • 2016
  • Remote sensing data has been widely used in the estimation of crop yields by employing statistical methods such as regression model. Machine learning, which is an efficient empirical method for classification and prediction, is another approach to crop yield estimation. This paper described the corn yield estimation in Iowa State using four machine learning approaches such as SVM (Support Vector Machine), RF (Random Forest), ERT (Extremely Randomized Trees) and DL (Deep Learning). Also, comparisons of the validation statistics among them were presented. To examine the seasonal sensitivities of the corn yields, three period groups were set up: (1) MJJAS (May to September), (2) JA (July and August) and (3) OC (optimal combination of month). In overall, the DL method showed the highest accuracies in terms of the correlation coefficient for the three period groups. The accuracies were relatively favorable in the OC group, which indicates the optimal combination of month can be significant in statistical modeling of crop yields. The differences between our predictions and USDA (United States Department of Agriculture) statistics were about 6-8 %, which shows the machine learning approaches can be a viable option for crop yield modeling. In particular, the DL showed more stable results by overcoming the overfitting problem of generic machine learning methods.

Tillage boundary detection based on RGB imagery classification for an autonomous tractor

  • Kim, Gookhwan;Seo, Dasom;Kim, Kyoung-Chul;Hong, Youngki;Lee, Meonghun;Lee, Siyoung;Kim, Hyunjong;Ryu, Hee-Seok;Kim, Yong-Joo;Chung, Sun-Ok;Lee, Dae-Hyun
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.205-217
    • /
    • 2020
  • In this study, a deep learning-based tillage boundary detection method for autonomous tillage by a tractor was developed, which consisted of image cropping, object classification, area segmentation, and boundary detection methods. Full HD (1920 × 1080) images were obtained using a RGB camera installed on the hood of a tractor and were cropped to 112 × 112 size images to generate a dataset for training the classification model. The classification model was constructed based on convolutional neural networks, and the path boundary was detected using a probability map, which was generated by the integration of softmax outputs. The results show that the F1-score of the classification was approximately 0.91, and it had a similar performance as the deep learning-based classification task in the agriculture field. The path boundary was determined with edge detection and the Hough transform, and it was compared to the actual path boundary. The average lateral error was approximately 11.4 cm, and the average angle error was approximately 8.9°. The proposed technique can perform as well as other approaches; however, it only needs low cost memory to execute the process unlike other deep learning-based approaches. It is possible that an autonomous farm robot can be easily developed with this proposed technique using a simple hardware configuration.

Deep Learning Based Security Model for Cloud based Task Scheduling

  • Devi, Karuppiah;Paulraj, D.;Muthusenthil, Balasubramanian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3663-3679
    • /
    • 2020
  • Scheduling plays a dynamic role in cloud computing in generating as well as in efficient distribution of the resources of each task. The principle goal of scheduling is to limit resource starvation and to guarantee fairness among the parties using the resources. The demand for resources fluctuates dynamically hence the prearranging of resources is a challenging task. Many task-scheduling approaches have been used in the cloud-computing environment. Security in cloud computing environment is one of the core issue in distributed computing. We have designed a deep learning-based security model for scheduling tasks in cloud computing and it has been implemented using CloudSim 3.0 simulator written in Java and verification of the results from different perspectives, such as response time with and without security factors, makespan, cost, CPU utilization, I/O utilization, Memory utilization, and execution time is compared with Round Robin (RR) and Waited Round Robin (WRR) algorithms.

Face Size Detection using Deep Learning (딥 러닝을 통한 얼굴 크기 탐지)

  • Tseden, Batkhongor;Lee, Hae-Yeoun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.05a
    • /
    • pp.352-353
    • /
    • 2018
  • Many deep learning approaches are studied for face detection in these days. However, there is still a performance problem to run efficiently on devices with limited resources. Our method can enhance the detection speed by decreasing the number of scaling for detection methods that use many different scaling per image to detect the different size of faces. Also, we keep our deep learning model easy to implement and small as possible. Moreover, it can be used for other special object detection problems but not only for face detection.

Toward Sentiment Analysis Based on Deep Learning with Keyword Detection in a Financial Report (재무 보고서의 키워드 검출 기반 딥러닝 감성분석 기법)

  • Jo, Dongsik;Kim, Daewhan;Shin, Yoojin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.670-673
    • /
    • 2020
  • Recent advances in artificial intelligence have allowed for easier sentiment analysis (e.g. positive or negative forecast) of documents such as a finance reports. In this paper, we investigate a method to apply text mining techniques to extract in the financial report using deep learning, and propose an accounting model for the effects of sentiment values in financial information. For sentiment analysis with keyword detection in the financial report, we suggest the input layer with extracted keywords, hidden layers by learned weights, and the output layer in terms of sentiment scores. Our approaches can help more effective strategy for potential investors as a professional guideline using sentiment values.

Collective Navigation Through a Narrow Gap for a Swarm of UAVs Using Curriculum-Based Deep Reinforcement Learning (커리큘럼 기반 심층 강화학습을 이용한 좁은 틈을 통과하는 무인기 군집 내비게이션)

  • Myong-Yol Choi;Woojae Shin;Minwoo Kim;Hwi-Sung Park;Youngbin You;Min Lee;Hyondong Oh
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.117-129
    • /
    • 2024
  • This paper introduces collective navigation through a narrow gap using a curriculum-based deep reinforcement learning algorithm for a swarm of unmanned aerial vehicles (UAVs). Collective navigation in complex environments is essential for various applications such as search and rescue, environment monitoring and military tasks operations. Conventional methods, which are easily interpretable from an engineering perspective, divide the navigation tasks into mapping, planning, and control; however, they struggle with increased latency and unmodeled environmental factors. Recently, learning-based methods have addressed these problems by employing the end-to-end framework with neural networks. Nonetheless, most existing learning-based approaches face challenges in complex scenarios particularly for navigating through a narrow gap or when a leader or informed UAV is unavailable. Our approach uses the information of a certain number of nearest neighboring UAVs and incorporates a task-specific curriculum to reduce learning time and train a robust model. The effectiveness of the proposed algorithm is verified through an ablation study and quantitative metrics. Simulation results demonstrate that our approach outperforms existing methods.

Generalized Steganalysis using Deep Learning (딥러닝을 이용한 범용적 스테그아날리시스)

  • Kim, Hyunjae;Lee, Jaekoo;Kim, Gyuwan;Yoon, Sungroh
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.4
    • /
    • pp.244-249
    • /
    • 2017
  • Steganalysis is to detect information hidden by steganography inside general data such as images. There are stegoanalysis techniques that use machine learning (ML). Existing ML approaches to steganalysis are based on extracting features from stego images and modeling them. Recently deep learning-based methodologies have shown significant improvements in detection accuracy. However, all the existing methods, including deep learning-based ones, have a critical limitation in that they can only detect stego images that are created by a specific steganography method. In this paper, we propose a generalized steganalysis method that can model multiple types of stego images using deep learning. Through various experiments, we confirm the effectiveness of our approach and envision directions for future research. In particular, we show that our method can detect each type of steganography with the same level of accuracy as that of a steganalysis method dedicated to that type of steganography, thereby demonstrating the general applicability of our approach to multiple types of stego images.