• Title/Summary/Keyword: Deep Learning Approaches

Search Result 275, Processing Time 0.022 seconds

Deep Learning Approaches to RUL Prediction of Lithium-ion Batteries (딥러닝을 이용한 리튬이온 배터리 잔여 유효수명 예측)

  • Jung, Sang-Jin;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.21-27
    • /
    • 2020
  • Lithium-ion batteries are the heart of energy-storing devices and electric vehicles. Owing to their superior qualities, such as high capacity and energy efficiency, they have become quite popular, resulting in an increased demand for failure/damage prevention and useable life maximization. To prevent failure in Lithium-ion batteries, improve their reliability, and ensure productivity, prognosticative measures such as condition monitoring through sensors, condition assessment for failure detection, and remaining useful life prediction through data-driven prognostics and health management approaches have become important topics for research. In this study, the residual useful life of Lithium-ion batteries was predicted using two efficient artificial recurrent neural networks-ong short-term memory (LSTM) and gated recurrent unit (GRU). The proposed approaches were compared for prognostics accuracy and cost-efficiency. It was determined that LSTM showed slightly higher accuracy, whereas GRUs have a computational advantage.

Attentive Transfer Learning via Self-supervised Learning for Cervical Dysplasia Diagnosis

  • Chae, Jinyeong;Zimmermann, Roger;Kim, Dongho;Kim, Jihie
    • Journal of Information Processing Systems
    • /
    • v.17 no.3
    • /
    • pp.453-461
    • /
    • 2021
  • Many deep learning approaches have been studied for image classification in computer vision. However, there are not enough data to generate accurate models in medical fields, and many datasets are not annotated. This study presents a new method that can use both unlabeled and labeled data. The proposed method is applied to classify cervix images into normal versus cancerous, and we demonstrate the results. First, we use a patch self-supervised learning for training the global context of the image using an unlabeled image dataset. Second, we generate a classifier model by using the transferred knowledge from self-supervised learning. We also apply attention learning to capture the local features of the image. The combined method provides better performance than state-of-the-art approaches in accuracy and sensitivity.

Musical Genre Classification Based on Deep Residual Auto-Encoder and Support Vector Machine

  • Xue Han;Wenzhuo Chen;Changjian Zhou
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.13-23
    • /
    • 2024
  • Music brings pleasure and relaxation to people. Therefore, it is necessary to classify musical genres based on scenes. Identifying favorite musical genres from massive music data is a time-consuming and laborious task. Recent studies have suggested that machine learning algorithms are effective in distinguishing between various musical genres. However, meeting the actual requirements in terms of accuracy or timeliness is challenging. In this study, a hybrid machine learning model that combines a deep residual auto-encoder (DRAE) and support vector machine (SVM) for musical genre recognition was proposed. Eight manually extracted features from the Mel-frequency cepstral coefficients (MFCC) were employed in the preprocessing stage as the hybrid music data source. During the training stage, DRAE was employed to extract feature maps, which were then used as input for the SVM classifier. The experimental results indicated that this method achieved a 91.54% F1-score and 91.58% top-1 accuracy, outperforming existing approaches. This novel approach leverages deep architecture and conventional machine learning algorithms and provides a new horizon for musical genre classification tasks.

Volume-sharing Multi-aperture Imaging (VMAI): A Potential Approach for Volume Reduction for Space-borne Imagers

  • Jun Ho Lee;Seok Gi Han;Do Hee Kim;Seokyoung Ju;Tae Kyung Lee;Chang Hoon Song;Myoungjoo Kang;Seonghui Kim;Seohyun Seong
    • Current Optics and Photonics
    • /
    • v.7 no.5
    • /
    • pp.545-556
    • /
    • 2023
  • This paper introduces volume-sharing multi-aperture imaging (VMAI), a potential approach proposed for volume reduction in space-borne imagers, with the aim of achieving high-resolution ground spatial imagery using deep learning methods, with reduced volume compared to conventional approaches. As an intermediate step in the VMAI payload development, we present a phase-1 design targeting a 1-meter ground sampling distance (GSD) at 500 km altitude. Although its optical imaging capability does not surpass conventional approaches, it remains attractive for specific applications on small satellite platforms, particularly surveillance missions. The design integrates one wide-field and three narrow-field cameras with volume sharing and no optical interference. Capturing independent images from the four cameras, the payload emulates a large circular aperture to address diffraction and synthesizes high-resolution images using deep learning. Computational simulations validated the VMAI approach, while addressing challenges like lower signal-to-noise (SNR) values resulting from aperture segmentation. Future work will focus on further reducing the volume and refining SNR management.

A Deep Learning Method for Brain Tumor Classification Based on Image Gradient

  • Long, Hoang;Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1233-1241
    • /
    • 2022
  • Tumors of the brain are the deadliest, with a life expectancy of only a few years for those with the most advanced forms. Diagnosing a brain tumor is critical to developing a treatment plan to help patients with the disease live longer. A misdiagnosis of brain tumors will lead to incorrect medical treatment, decreasing a patient's chance of survival. Radiologists classify brain tumors via biopsy, which takes a long time. As a result, the doctor will need an automatic classification system to identify brain tumors. Image classification is one application of the deep learning method in computer vision. One of the deep learning's most powerful algorithms is the convolutional neural network (CNN). This paper will introduce a novel deep learning structure and image gradient to classify brain tumors. Meningioma, glioma, and pituitary tumors are the three most popular forms of brain cancer represented in the Figshare dataset, which contains 3,064 T1-weighted brain images from 233 patients. According to the numerical results, our method is more accurate than other approaches.

Pragmatic Assessment of Optimizers in Deep Learning

  • Ajeet K. Jain;PVRD Prasad Rao ;K. Venkatesh Sharma
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.115-128
    • /
    • 2023
  • Deep learning has been incorporating various optimization techniques motivated by new pragmatic optimizing algorithm advancements and their usage has a central role in Machine learning. In recent past, new avatars of various optimizers are being put into practice and their suitability and applicability has been reported on various domains. The resurgence of novelty starts from Stochastic Gradient Descent to convex and non-convex and derivative-free approaches. In the contemporary of these horizons of optimizers, choosing a best-fit or appropriate optimizer is an important consideration in deep learning theme as these working-horse engines determines the final performance predicted by the model. Moreover with increasing number of deep layers tantamount higher complexity with hyper-parameter tuning and consequently need to delve for a befitting optimizer. We empirically examine most popular and widely used optimizers on various data sets and networks-like MNIST and GAN plus others. The pragmatic comparison focuses on their similarities, differences and possibilities of their suitability for a given application. Additionally, the recent optimizer variants are highlighted with their subtlety. The article emphasizes on their critical role and pinpoints buttress options while choosing among them.

Structural Crack Detection Using Deep Learning: An In-depth Review

  • Safran Khan;Abdullah Jan;Suyoung Seo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.371-393
    • /
    • 2023
  • Crack detection in structures plays a vital role in ensuring their safety, durability, and reliability. Traditional crack detection methods sometimes need significant manual inspections, which are laborious, expensive, and prone to error by humans. Deep learning algorithms, which can learn intricate features from large-scale datasets, have emerged as a viable option for automated crack detection recently. This study presents an in-depth review of crack detection methods used till now, like image processing, traditional machine learning, and deep learning methods. Specifically, it will provide a comparative analysis of crack detection methods using deep learning, aiming to provide insights into the advancements, challenges, and future directions in this field. To facilitate comparative analysis, this study surveys publicly available crack detection datasets and benchmarks commonly used in deep learning research. Evaluation metrics employed to check the performance of different models are discussed, with emphasis on accuracy, precision, recall, and F1-score. Moreover, this study provides an in-depth analysis of recent studies and highlights key findings, including state-of-the-art techniques, novel architectures, and innovative approaches to address the shortcomings of the existing methods. Finally, this study provides a summary of the key insights gained from the comparative analysis, highlighting the potential of deep learning in revolutionizing methodologies for crack detection. The findings of this research will serve as a valuable resource for researchers in the field, aiding them in selecting appropriate methods for crack detection and inspiring further advancements in this domain.

A machine learning framework for performance anomaly detection

  • Hasnain, Muhammad;Pasha, Muhammad Fermi;Ghani, Imran;Jeong, Seung Ryul;Ali, Aitizaz
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.97-105
    • /
    • 2022
  • Web services show a rapid evolution and integration to meet the increased users' requirements. Thus, web services undergo updates and may have performance degradation due to undetected faults in the updated versions. Due to these faults, many performances and regression anomalies in web services may occur in real-world scenarios. This paper proposed applying the deep learning model and innovative explainable framework to detect performance and regression anomalies in web services. This study indicated that upper bound and lower bound values in performance metrics provide us with the simple means to detect the performance and regression anomalies in updated versions of web services. The explainable deep learning method enabled us to decide the precise use of deep learning to detect performance and anomalies in web services. The evaluation results of the proposed approach showed us the detection of unusual behavior of web service. The proposed approach is efficient and straightforward in detecting regression anomalies in web services compared with the existing approaches.

Deep reinforcement learning for base station switching scheme with federated LSTM-based traffic predictions

  • Hyebin Park;Seung Hyun Yoon
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.379-391
    • /
    • 2024
  • To meet increasing traffic requirements in mobile networks, small base stations (SBSs) are densely deployed, overlapping existing network architecture and increasing system capacity. However, densely deployed SBSs increase energy consumption and interference. Although these problems already exist because of densely deployed SBSs, even more SBSs are needed to meet increasing traffic demands. Hence, base station (BS) switching operations have been used to minimize energy consumption while guaranteeing quality-of-service (QoS) for users. In this study, to optimize energy efficiency, we propose the use of deep reinforcement learning (DRL) to create a BS switching operation strategy with a traffic prediction model. First, a federated long short-term memory (LSTM) model is introduced to predict user traffic demands from user trajectory information. Next, the DRL-based BS switching operation scheme determines the switching operations for the SBSs using the predicted traffic demand. Experimental results confirm that the proposed scheme outperforms existing approaches in terms of energy efficiency, signal-to-interference noise ratio, handover metrics, and prediction performance.

Early Detection of Rice Leaf Blast Disease using Deep-Learning Techniques

  • Syed Rehan Shah;Syed Muhammad Waqas Shah;Hadia Bibi;Mirza Murad Baig
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.211-221
    • /
    • 2024
  • Pakistan is a top producer and exporter of high-quality rice, but traditional methods are still being used for detecting rice diseases. This research project developed an automated rice blast disease diagnosis technique based on deep learning, image processing, and transfer learning with pre-trained models such as Inception V3, VGG16, VGG19, and ResNet50. The modified connection skipping ResNet 50 had the highest accuracy of 99.16%, while the other models achieved 98.16%, 98.47%, and 98.56%, respectively. In addition, CNN and an ensemble model K-nearest neighbor were explored for disease prediction, and the study demonstrated superior performance and disease prediction using recommended web-app approaches.