• Title/Summary/Keyword: Deep Depth Mold

Search Result 13, Processing Time 0.02 seconds

A Study on the Novel Prediction of Mold Wall Thickness for a Deep Depth Injection Mold (깊이가 깊은 사출 금형의 새로운 측벽 두께 설계에 관한 연구)

  • Hwang, S.J.;Lyu, M.Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.528-533
    • /
    • 2008
  • Cavity in the mold is exposed to high pressure during injection molding operation. Injection molded articles with deep depth are often demanded as design variety increases. Subsequently mold becomes weak and deformation increases as the mold depth increases. Thus the injection molds for deep depth articles should be designed to hold out high pressure or stress concentration and large deformation. Through this study, equation for mold design was examined and suggested novel method to determine equation for mold design with deep depth. Novel equation developed in this study was modified from beam theory considering cantilever and two points bending situation while previous equation was modified from just cantilever bending situation. The validity of novel equation was verified through computer simulations for various mold side and wall thickness.

A method of mold wall thickness design for a deep depth injection mold (깊이가 깊은 사출 금형의 측벽 설계 방법)

  • Hwang, S.J.;Lyu, M.Y.;Kim, D.W.;Kim, S.Y.;Shin, K.S.;Kim, K.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.301-304
    • /
    • 2008
  • The cavity of mold is exposed to high pressure during injection molding operation. Injection molded articles with deep depth are often demanded as design variety increases. Mold becomes weak and deformation increases as the mold depth increases. Thus the injection molds for deep depth articles should be designed to hold out high pressure or stress and large deformation. Through this study, equation for mold design was examined and suggested novel method to determine equation for mold design with deep depth. Novel equation developed in this study was consisted with cantilever and two points bending while previous equation was modified from just cantilever bending. The validity of novel equation was verified through computer simulation.

  • PDF

A Study on the Wall Thickness Design for Injection Molding (사출 금형의 벽두께 설계 방법의 고찰)

  • Hwang, S.J.;Lyu, M.Y.;Kim, D.W.;Kim, S.Y.;Shin, K.S.;Kim, K.Y.
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.149-153
    • /
    • 2008
  • The cavity of mold is exposed to high pressure during injection molding operation. Injection molded articles with deep depth are often demanded as design variety increases. Mold becomes weak and deformation increases as the mold depth increases. Thus the injection molds for deep depth articles should be designed to hold out high pressure or stress and large deformation. Through this study, equation for mold design was examined and suggested novel method to determine equation for mold design with deep depth. Novel equation developed in this study was consisted with cantilever and two points bending while previous equation was modified from just cantilever bending. The validity of novel equation was verified through computer simulation.

  • PDF

Fabrication of micro structure mold using SLS Rapid Prototyping (SLS형 쾌속조형기를 이용한 미세구조 몰드 제작)

  • 유홍진;김동학;장석원;김태완
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.2
    • /
    • pp.186-190
    • /
    • 2004
  • By this time, a mold with nano size pattern was produced using a fabrication of X-ray lithography method and in a m icro size's case it was produced using fabrication of Deep UV lithography. In this paper, we produced mold with 400 $\mu{m}$depth pattern using a new technology of SLS(Selective Laser Sintering) Rapid Prototyping method. In addition to enhance strength and thermal stability, we produced Ni structure with a thickness of 300 $\mu{m}$ on a surface of mold using electro forming method.

  • PDF

A structural analysis of deep depth injection mold to investigate the cause of crack (깊이가 깊은 사출금형의 크랙 원인 파악을 위한 강도해석)

  • Choi, S.H.;Lyu, M.Y.;Kim, D.W.;Kim, S.Y.;Shin, K.S.;Kim, K.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.297-300
    • /
    • 2008
  • High pressure is involved during injection molding operation specially packing phase. Cracks in the mold are often occurred by high cavity pressure. In this study, structural analysis of mold has been performed using commercial softwares, Abaqus and Ansys, to investigate cause of crack in the injection mold. Structural analysis contains four cases: stress distribution according to the cavity pressure, stress concentration according to the boundary conditions, stress concentration for inter-locking design of mold, and stress concentration for distributed cavity pressure. Through this study it was observed that the locations of stress concentrations were coincident with locations of crack. Robust mold design is being required to withstand high cavity pressure.

  • PDF

A Study on the Low Depth Marking Method through Laser Source Characteristic Analysis (Laser Source 특성 분석을 통한 Low Depth Marking 공법 연구 및 고찰)

  • Jeon, Sooho;Kim, Jeho;Lee, Youngbeom;Moon, Kiill
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.65-71
    • /
    • 2022
  • In the case of Mobile PKG Trend is in a situation where a decrease in Mold Top Margin is inevitable due to its miniaturization and high capacity product requirements. However, conventional laser marking technology has an average depth of deep, and when applied to narrow top margin products, PKG strength is expected to decrease due to overlapping processing, and reliability is reduced due to poor quality such as chip damage due to laser exposure. Therefore, we have secured the technology through research on low-depth laser marking solutions that can accommodate narrow top margin products. As a result of the evaluation of applicable technology application for PKG development products, it was verified that the marking depth decreased by 67% reduced and the PKG strength increased by 12%. Furthermore, the quality verification of Laser Damage that can occur through PKG Mechanical analysis was performed, and no Chip Damage defects were found. This ensured the stability of mass production application quality.

A study on the factors influencing at corner area material thickness changes of rectangular drawing products (각통드로잉 제품의 모서리 재료두께 변화에 영향을 미치는 인자에 대한 해석 연구)

  • Yun, Jae-Woong;Cho, Sang-Hee;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.14 no.1
    • /
    • pp.22-29
    • /
    • 2020
  • The analysis was carried out using the press molding analysis program by applying six parameters such as material type change, material thickness, friction coefficient, rp, rd and blank holder pressure. As a result of CAE analysis of the soft material DC04 and the relatively hard material HX300LAD, the thickness of the punch R part of the soft material was significantly reduced. The flange portion is greatly increased in thickness in the hard material by the compression action. As a result of considering the deformation amount of 0.6mm, 1.0mm, 1.5mm according to the material thickness, the influence of the thickness is considered to be very small. In case of the material thickness of 0.6mm, the rate of change increases due to the deep drawing depth relative to the material thickness. The sizes of the punches R and die R have the greatest influence on the change in thickness of the material in drawing molding, the smaller the punch R, the thinner the edges of the product, The larger the R of the die, the greater the material thickness of the flange portion. As the coefficient of friction and the blank holder pressure increase, the frictional force of the flange portion increases, which increases the radial force in the drawing process and increases the thickness change of the flange portion.

The Evaluation of Wear Characteristics Depending on Components of Surface Treatment for Cemented Carbide Endmill (초경엔드밀 적용 표면처리 조성별 마모특성 영향 평가)

  • Yoon, Il Chae;Kim, Dong Bae;Youn, Guk Tae;Yoon, In Jun;Lee, Ji Hyung;Ko, Tae Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.6
    • /
    • pp.513-519
    • /
    • 2014
  • For depth machining in die and mold, Electrical Discharge Machining (EDM) is used generally. To make deep hole and deep shape efficiently, cemented carbide endmill for depth machining is necessary. For this purpose, cemented carbide endmill was designed using design of experiment (DOE). To improve cutting performance, endmill was coated with multilayer surface treatment, TiAlCrSiN and TiAlCrN, for higher wear resistance. In order to evaluate the endmill, Transverse Rupture Strength (TRS) test was tried for investigating the relationship between surface treatment and strength in endmill body. Scratch test was also used for measuring adhesion force of each surface treatment. To evaluate hardness of surface treatment, Atomic Force Microscope (AFM) analysis was carried out. Wear test was executed for characteristics of each surface treatment in high temperature. Consequently, TiAlCrSiN was superior to the TiAlCrN coating in case of high temperature environment such as cutting.

Analysis of Cavity Pressure for Packing Conditions in Injection Molding of a Deep Depth Product (깊이가 깊은 제품의 사출성형에서 보압조건에 따른 캐비티 내압의 분석)

  • Kim, Dong Woo;Kang, Mina;Kim, Hyeok;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.685-692
    • /
    • 2012
  • Injection molding operation consists of phases of filling, packing, and cooling. The highest cavity pressure is involved in the packing phase among the operation phases. Thus the cavity pressure largely depends upon velocity to pressure (v/p) switchover timing and magnitude of packing pressure. Developed cavity pressure is directly related to stress concentration in the cavity of mold and it may cause a crack in the mold. Consequently control of cavity pressure is considered very important. In this study, cavity pressure was analyzed in terms of v/p switchover timing and packing pressure through computer simulation and experiment. Cavity pressure was increased as the v/p switchover timing was delayed. Residual pressure after cooling phase was observed when the v/p switchover timing was late, which was due to increased pressurizing time for long filling phase. Cavity pressure was increased proportionally with the packing pressure. Residual pressure after cooling phase was also observed, and it was increased with increasing packing pressure. High cavity pressure and residual pressure have been observed at late v/p switchover and high packing pressure. Compared with simulation and experimental results, the profiles of pressures were very similar however simulation could not predict residual pressure. Packing condition was important for the control of cavity pressure and the optimum condition could be set up using CAE analysis.

A Study for In-process Monitoring in Press die (프레스금형 형내 모니터링에 대한 연구)

  • Yun, Jae-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.692-696
    • /
    • 2017
  • The shape of press components is becoming increasingly complex due to customer demands, process shortening and cost savings. In addition, the stability of the pressing process frequently varies during mass production due to the influence of many factors. In order to ensure the process stability, it is necessary to establish a process in which reproducibility is realized in tolerance, which is sufficient for advance study of shape, material, press, mold and lubrication. However, unforeseen changes in process parameters cause disruptions in production line shutdowns and production planning. In this paper, we introduce a method to monitor a real time process by applying a sensor to a press mold. A non-contact type sensor for measuring the flow of a sheet material and an example of an experiment using the optical sensor which is highly applicable to mass production are presented. An optical sensor was installed in a cylindrical drawing mold to test its potential application while changing the material, blank holder force, and drawing ratio. We also quantitatively determined that the flow of other sheet materials was quantified locally using a square drawing die and that the measured value was always smaller than the drawing depth due to the material elongation. Finally, we propose a field that can be used by attaching the sensor to the press mold. We hope that the consequent cost reduction will contribute to increasing global mold competitiveness.