• Title/Summary/Keyword: Deep Cold Water

Search Result 100, Processing Time 0.028 seconds

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF

Distribution of Bacterial Decomposers in Lake Khuvsgul, Mongolia (몽골 훕스굴 호수 수층에서 유기물질 분해세균의 분포)

  • Jung, You-Jung;Jung, Da-Woon;Kim, Ju-Young;Zo, Young-Gun;Yim, Joung-Han;Lee, Hong-Kum;Ahn, Tae-Seok
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.119-125
    • /
    • 2009
  • To understand the ecological function of heterotrophic bacterial community in water column of large freshwater lakes in the permafrost zone, we investigated the structure and function of bacterial community in Lake Khuvsgul, Mongolia. Species composition of overall bacterial community was analyzed by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments, and bacteria that can be cultured at 10oC were isolated and characterized. Based on the depth profile of environmental parameters, thermocline and chemocline were recognized at the 5~10 m zone of the water column. The stratified DGGE profile indicated that the discontinuity of water properties might influence the structure of bacterial community: band profiles in the 0~5 m zone were diverse with large change by depth, but the profile was relatively stable at the $\geq$10 m zone, with predominance of the band identified as Acidovorax facilis. Bacterial cultures were screened for protease, cellulase, amylase and lipase activity, and 23 isolates were selected for high activity of the hydrolytic enzymes. The isolates were identified based on their 16S rRNA gene sequences. In the surface water (zero meter depth), Acidovorax defluvii and Sphingobacterium faecium with high cellulase activity were present. Flavobacterium succinicans, Mycoplana bullata and A. facilis were stably predominant isolates at 2 m, 5 m, and $\geq$10 m depths, respectively. F. succinicans isolates showed high protease activity while M. bullata isolates showed moderate levels of protease and celluase activity. A. facilis isolates showed either cellulase or lipase activity, exclusively to each other. According to the profile of growth rates of the isolates in the temperature range of $0\sim42^{\circ}C$, the surface-zone (0~5 m) isolates were facultative psychrophiles while isolates from $\geq$10 m depth were typical mesophiles. This stratification is believed to be due to stratified availability of organic materials to the bacterial decomposers. In the water column below the chemoline, the environment is extremely oligotrophic so that the trait of rapid growth in low temperature might not be demanded by deep-lake decomposers. The stratified distribution of community composition and decomposer activity in Lake Khuvsgul implies that ecological functions of bacterial community in lakes of cold region are sharply divided by water column stratification.

Herbicidal Phytotoxicity under Adverse Environments and Countermeasures (불량환경하(不良環境下)에서의 제초제(除草劑) 약해(藥害)와 경감기술(輕減技術))

  • Kwon, Y.W.;Hwang, H.S.;Kang, B.H.
    • Korean Journal of Weed Science
    • /
    • v.13 no.4
    • /
    • pp.210-233
    • /
    • 1993
  • The herbicide has become indispensable as much as nitrogen fertilizer in Korean agriculture from 1970 onwards. It is estimated that in 1991 more than 40 herbicides were registered for rice crop and treated to an area 1.41 times the rice acreage ; more than 30 herbicides were registered for field crops and treated to 89% of the crop area ; the treatment acreage of 3 non-selective foliar-applied herbicides reached 2,555 thousand hectares. During the last 25 years herbicides have benefited the Korean farmers substantially in labor, cost and time of farming. Any herbicide which causes crop injury in ordinary uses is not allowed to register in most country. Herbicides, however, can cause crop injury more or less when they are misused, abused or used under adverse environments. The herbicide use more than 100% of crop acreage means an increased probability of which herbicides are used wrong or under adverse situation. This is true as evidenced by that about 25% of farmers have experienced the herbicide caused crop injury more than once during last 10 years on authors' nationwide surveys in 1992 and 1993 ; one-half of the injury incidences were with crop yield loss greater than 10%. Crop injury caused by herbicide had not occurred to a serious extent in the 1960s when the herbicides fewer than 5 were used by farmers to the field less than 12% of total acreage. Farmers ascribed about 53% of the herbicidal injury incidences at their fields to their misuses such as overdose, careless or improper application, off-time application or wrong choice of the herbicide, etc. While 47% of the incidences were mainly due to adverse natural conditions. Such misuses can be reduced to a minimum through enhanced education/extension services for right uses and, although undesirable, increased farmers' experiences of phytotoxicity. The most difficult primary problem arises from lack of countermeasures for farmers to cope with various adverse environmental conditions. At present almost all the herbicides have"Do not use!" instructions on label to avoid crop injury under adverse environments. These "Do not use!" situations Include sandy, highly percolating, or infertile soils, cool water gushing paddy, poorly draining paddy, terraced paddy, too wet or dry soils, days of abnormally cool or high air temperature, etc. Meanwhile, the cultivated lands are under poor conditions : the average organic matter content ranges 2.5 to 2.8% in paddy soil and 2.0 to 2.6% in upland soil ; the canon exchange capacity ranges 8 to 12 m.e. ; approximately 43% of paddy and 56% of upland are of sandy to sandy gravel soil ; only 42% of paddy and 16% of upland fields are on flat land. The present situation would mean that about 40 to 50% of soil applied herbicides are used on the field where the label instructs "Do not use!". Yet no positive effort has been made for 25 years long by government or companies to develop countermeasures. It is a really sophisticated social problem. In the 1960s and 1970s a subside program to incoporate hillside red clayish soil into sandy paddy as well as campaign for increased application of compost to the field had been operating. Yet majority of the sandy soils remains sandy and the program and campaign had been stopped. With regard to this sandy soil problem the authors have developed a method of "split application of a herbicide onto sandy soil field". A model case study has been carried out with success and is introduced with key procedure in this paper. Climate is variable in its nature. Among the climatic components sudden fall or rise in temperature is hardly avoidable for a crop plant. Our spring air temperature fluctuates so much ; for example, the daily mean air temperature of Inchon city varied from 6.31 to $16.81^{\circ}C$ on April 20, early seeding time of crops, within${\times}$2Sd range of 30 year records. Seeding early in season means an increased liability to phytotoxicity, and this will be more evident in direct water-seeding of rice. About 20% of farmers depend on the cold underground-water pumped for rice irrigation. If the well is deep over 70m, the fresh water may be about $10^{\circ}C$ cold. The water should be warmed to about $20^{\circ}C$ before irrigation. This is not so practiced well by farmers. In addition to the forementioned adverse conditions there exist many other aspects to be amended. Among them the worst for liquid spray type herbicides is almost total lacking in proper knowledge of nozzle types and concern with even spray by the administrative, rural extension officers, company and farmers. Even not available in the market are the nozzles and sprayers appropriate for herbicides spray. Most people perceive all the pesticide sprayers same and concern much with the speed and easiness of spray, not with correct spray. There exist many points to be improved to minimize herbicidal phytotoxicity in Korea and many ways to achieve the goal. First of all it is suggested that 1) the present evaluation of a new herbicide at standard and double doses in registration trials is to be an evaluation for standard, double and triple doses to exploit the response slope in making decision for approval and recommendation of different dose for different situation on label, 2) the government is to recognize the facts and nature of the present problem to correct the present misperceptions and to develop an appropriate national program for improvement of soil conditions, spray equipment, extention manpower and services, 3) the researchers are to enhance researches on the countermeasures and 4) the herbicide makers/dealers are to correct their misperceptions and policy for sales, to develop database on the detailed use conditions of consumer one by one and to serve the consumers with direct counsel based on the database.

  • PDF

Environmental Characteristics and Catch Fluctuations of Set Net Ground in the Coastal Water of Hanlim in Cheju Island I. Properties of Temperature and Salinity (제주도 한림 연안 정치망어장의 환경특성과 어획량변동에 관한 연구 I. 수온 및 염분특성)

  • KIM Jun-Teck;JEONG Dong-Gun;RHO Hong-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.859-868
    • /
    • 1998
  • In order to investigate the relation between the marine environmental characteristics and the change of the catch in set net, the marine environment properties were analyzed by temperature and salinity observed in the western coastal area of Cheju Island from 1995 to 1996 and the results are as follows 1) Main axis of Tsushima Current appeared in the western coastal area of Cheju Island was off 2$\~$3 miles from November to May. Therefore the waters of high temperature over $14^{\circ}C$ and high salinity from $34.40\%_{\circ}$ to $34.60\%_{\circ}$ were distributed homogeneously from surface to bottom in this time. But China Coastal Waters of low salinity appeared in the Cheju Strait from June to October, surface waters became of high temperature and low salinity, and middle and bottom waters became of the temperature from 11 to $14^{\circ}C$ and the salinity over $33.50\%_{\circ}$ and then vertically sharp thermocline and halocline are formed in the western coastal area of Cheju Island. In summer, the water temperature and salinity of the surface waters in wstern coastal area of Cheju Island were lower and higher respectively than that in middle area of the Cheju Strait and the temperature and salinity of the bottom waters in this area were higher and lower, respectively than that in middle area of the Cheju Strait. Such a distribution shows a tidal front in this coastal area. On the whole year, surface temperature and salinity were from 14 to $23^{\circ}C$ and from 30.60 to $34.60\%_{\circ}$, respectively, and annual fluctuation range of temperature and salinity was within $9^{\circ}C$ and $4.00\%_{\circ}$, respectively, Thus, annual fluctuation range in this area is much narrower than that in the Cheju Strait. In bottom water, temperature ranges from 14 to $20^{\circ}C$ through the year. Thus, the fluctuation range of temperature is narrow. The low temperature of from $11^{\circ}C$ to $13^{\circ}C$ appeared in the west enterance of Cheju Strait was not shown in this coastal area. 2) The salinity of bottom water was from $33.60\%_{\circ}$ to $34.40\%_{\circ}$ in 1995, while low salinity wale. below $32.00\%_{\circ}$ appeared all depth from June in 1996. Thus, the variation of hydrographic conditions in this area is narrow in winter, and wide in summer due to the influence of China Coastal Waters. 3) In summer, surface cold water, local eddy and fronts of temperature and salinity were showed within 2 mile from the west coast of the Cheju Island due to vertical mixing by tidal current. Especially, temperature and salinity of bottom water are changed with the change of depth around Biyang-Do. Thus, the front of temperature and salinity appeared clearly between shallow area with the depth of under 10 m and deep area with of the depth of more than 50m. Surface water in outside area where high temperature and low salinity water appear intrudes between Worlreong-Ri and Geumreung-Ri. Thus, the front of temperature and salinity was made along the line that connects from this coast to Biyang-Do, The temperature of the bottom water is $2^{\circ}C$ to $4^{\circ}C$ lower than that of the surface water and its salinity is $0.02\%_{\circ}$ to $0.08\%_{\circ}$ higher than that of the surface water even in shallow area.

  • PDF

Pollen analysis of alpine wetlands on Mt. Jeombong in Gangwon-do, South Korea and climate change during the late Holocene (점봉산 고산습지의 화분분석과 홀로세 후기 기후변화)

  • Yoon, Soon-Ock;Kim, Minji;Hwang, Sangill
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.4
    • /
    • pp.101-115
    • /
    • 2013
  • 11 alpine wetlands at the upper reaches of Bangtae River on a high flat summit around Mt. Jeombong were found. Two core samples(JB-1 and JB-2) among them were collected in order to reconstruct paleovegetation history and climate change using pollen analysis. Pinus and Quercus dominated at the wetland of JB-2 with a deep water depth were developed from 1,700 yr BP to 1,000 yr BP of the pollen zone I. Subsequently Quercus dominated in the pollen zone II from 1,000 to 400 yr BP, and it is supposed that warm weather prevailed with oak climax forest corresponding to the Medieval Warm Period. Moreover, sphagnum grew densely in the alpine wetlands and the wetlands were extended widely on the summit around Mt. Jeombong with the beginning of subzoneIIc at JB-2. The pollen zone III from 400 yr BP to the present with an increase in Pinus and a decrease in Quercus suggests cold climates under the Little Ice Age. Moreover, human disturbances at JB-2 were more significant than those at JB-1, based on the increase in Pinus.

Morphogenetic Environment of Jilmoe Bog in the Odae Mountain National Park (오대산국립공원 내 "질뫼늪"의 지형생성환경)

  • Son, Myoung-Won;Park, Kyeong
    • Journal of the Korean association of regional geographers
    • /
    • v.5 no.2
    • /
    • pp.133-142
    • /
    • 1999
  • The wetland is very important ecologically as a habitat of diverse organisms. The purpose of this paper is to elucidate the morphogenetic environment of Jilmoe Bog found in the Odae Mountain National Park Jilmoe Bog is located in the high etchplain(1,060m) where Daebo Granite which had intruded in Jura epoch of Mesozoic era has weathered deeply and has uplifted in the Tertiary. The annual mean temperature of study area is $5.3^{\circ}C$, the annual precipitation is 2,888mm. The minimun temperature of the coldest month(january) is below $-30^{\circ}C$ and the depth of frozen soil is over 1.6m. Jilmoe bog consists of a large bog and a small bog. The length of the large bog is 63m and its width is 42m. The basal surface of Jilmoe bog is uneven. Jilmoe bog is a string bog fanned due to frost actions. In String bog, its surface is wavy with stepped dry hills and net-like troughs crossing hill slope. It seems that string bog is related to the permofrost or seasonal permofrost of cold conifer forest(taiga) zone(where the depth of frozen soil is very deep in the least in winters). String bog is a kind of thermokarst that frozen soil thaws differentially locally in declining permofrost and ground surface becomes irregular. There is turf-banked terracette of width $30{\sim}40cm$ in the headwall of small cirque-type nivation hollow formed at footslope of Maebong mountain around Jilmoe bog. This turf-banked terracette is formed by the frost growth of soil water below grass mat in periglacial climate environment. Where water is plentiful such as a nivation follow${\sim}$valley corridor and a headwall of valley, turf patterned grounds of width $30{\sim}50cm$ are found. This turf patterned ground is 'unclassified patterned ground', earth hummock. In conclusion, Jilmoe bog is a string bog of thermokarst that the relief of ground surface is irregular according to locally differentially thawing of permofrost(frozen soil). Jilmoe bog is high moor, its surroundings belongs to periglacial environment that turf-banked terracette and turf patterned ground are fanned actively.

  • PDF

A Study on the twelve earthly branches' Yin Yang, Five elements, Six Qi, viscera combination, Mutual collision and Mutual combination. (십이지지(十二地支)의 음양(陰陽) 오행(五行) 육기(六氣) 장부(臟腑)의 배합(配合) 및 상충(相沖) 상합(相合)에 관한(關) 연구(硏究))

  • Kim, hung Joo;Jeon, yun ju;Yun, Chang-Yeol
    • Journal of Haehwa Medicine
    • /
    • v.27 no.1
    • /
    • pp.9-20
    • /
    • 2018
  • Objectives : Ten heavenly stems(10天干) and Twelve earthly branches(12地支) are symbols exposing change order in heaven and earth, and are a very important sign in studying oriental philosophy and oriental medicine. Especially, 10 heavenly stems(10天干) and 12 earthly branches(12地支) are indispensable for the study of Five Circuits And Six Qi(오운육기), and a deep study is needed. Methods : I have examined Yin Yang combination(음양배합), Five elements combination(오행배합), Six Qi 3Yin 3Yang combination(육기삼음삼양배합), viscera combination(장부배합), Mutual collision(상충), Six combination(육합), Three combination(삼합), etc. of 12 earthly branches(12지지) by referring to books such as "Yellow Emperor Internal Classic" ("黃帝內經") and "Principle of universe change" ("우주변화의 원리"). Results & Conclusions : Zi Yin Chen Wu Shen Xu(子 寅 辰 午 申 戌) become Yang(陽), Chou Mao Si Wei You Hai(丑 卯 巳 未 酉 亥) become Yin(陰), Zi Si Yin Mao Chen Si(子 丑 寅 卯 辰 巳) become Yang, and Wu Wei Shen You Xu Hai(午 未 申 酉 戌 亥) become Yin. Twelve earthly branches can be divided into five movements by its original meaning, where YinMao(인묘) is tree, SiWu(사오) is a fire, ShenYou(신유) is a gold, HaiZi(해자) is water, and ChenXuChouWei(진술축미) mediate in the middle of four movements So they become soil(土). SiHai(巳亥) is JueYin Wind Tree(궐음 풍목), ZiWu(子午) is ShaoYin Monarch Fire(소음 군화), ChouWei(丑未) is TaiYin Humid Soil(태음 습토), YinShen(寅申) is ShaoYang Ministerial Fire(소양 상화), MaoYou(卯酉) is YangMing Dry Gold(양명 조금), and ChenXu(辰戌) is TaiYang Cold Water(태양 한수). Viscera combination(장부배합) combines Zi(子) and Bile(膽), Chou(丑) and Liver(肝), Yin(寅) and Lung(肺), Mao(卯) and Large intestine(大腸), Chen(辰) and Stomach(胃), Si(巳) and Spleen(脾), Wu(午) and Heart(心), Wei(未) and Small intestine(小腸), Shen(申) and Bladder(膀胱), You(酉) and Kidney(腎), Xu(戌) and Pericardium(心包), Hai(亥) and Tri-energizer(三焦), Which means that the function of the viscera and channels is the most active at that time. Twelve earthly branches mutual collisions collide with Zi(子) and Wu(午), Chou(丑) and Wei(未), Yin(寅) and Shen(申), Mao(卯) and You(酉), Chen(辰) and Xu(戌), and Si(巳) and Hai(亥). The two colliding earthly branches are on opposite sides, facing each other and restricting each other by the relation of Yin-Yin and Yang-Yang it rejects each other so a collision occurs. Six Correspondences(六合) coincide with Zi(子) and Chou(丑), Yin(寅) and Hai (亥), Mao(卯) and Xu(戌), Chen(辰) and You(酉) and Si(巳) and Shen(申) Wu(午) and Wei(未). Three combination(三合) is composed of ShenZiChen(申子辰), SiYouChou(巳酉丑), YinWuXu(寅午戌), and HaiMaoWei(亥卯未). Three combination(三合) is composed of ShenZiChen(申子辰), SiYouChou(巳酉丑), YinWuXu(寅午戌), and HaiMaoWei(亥卯未). This is because the time Six Qi(六氣) shifts in these three years are the same.

Current Status of the Research on the Postharvest Technology of Melon(Cucumis melo L.) (멜론(Cucumis melo L.) 수확 후 관리기술 최근 연구 동향)

  • Oh, Su-Hwan;Bae, Ro-Na;Lee, Seung-Koo
    • Food Science and Preservation
    • /
    • v.18 no.4
    • /
    • pp.442-458
    • /
    • 2011
  • Among Cucubitaceae, melon (Cucumis melo) is one of the most diversified fruits, with various forms, sizes, pulps, and peel colors, In addition, it is a commercially important crop because of its high sweetness, deep flavor, and abundant juice. In the species, there are both climacteric and non-climacteric melons depending on the respiration and ethylene production patterns after harvest. Ethylene is also considered a crucial hormone for determining sex expression, Phytohormones other than ethylene interact and regulate ripening, There are some indices that can be used to evaluate the optimum harvest maturity. The harvest time can be estimated after the pollination time, which is the most commonly used method of determining the harvest maturity of the fruit. Besides the physiological aspects, the biochemical alterations, including those of sweetness, firmness, flavor, color, and rind, contribute to the overall fruit quality. These changes can be categorized based on the ethylene-dependent and ethylene-independent phenomena due to the ethylene-suppressed transgenic melon. After harvest, the fruits are precooled to $10^{\circ}C$ to reduce the field heat, after which they are sized and packed. The fruits can be treated with hot water ($60^{\circ}C$ for 60 min) to prevent the softening of the enzyme activity and microorganisms, and with calcium to maintain their firmness. 1-methylenecyclopropene (1-MCP) treatment also maintains their storability by inhibiting respiration and ethylene production. The shelf life of melon is very short even under cold storage, like other cucurbits, and it is prone to obtaining chilling injury under $10^{\circ}C$. In South Korea, low-temperature ($10^{\circ}C$) storage is known to be the best storage condition for the fruit. For long-time transport, CA storage is a good method of maintaining the quality of the fruit by reducing the respiration and ethylene. For fresh-cut processing, washing with a sanitizing agent and packing with plastic-film processing are needed, and low-temperature storage is necessary. The consumer need and demand for fresh-cut melon are growing, but preserving the quality of fresh-cut melon is more challenging than preserving the quality of the whole fruit.

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • 2001.05b
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF