• Title/Summary/Keyword: Deep CNNs

Search Result 82, Processing Time 0.019 seconds

Scalogram and Switchable Normalization CNN(SN-CNN) Based Bearing Falut Detection (Scalogram과 Switchable 정규화 기반 합성곱 신경망을 활용한 베이링 결함 탐지)

  • Delgermaa, Myagmar;Kim, Yun-Su;Seok, Jong-Won
    • Journal of IKEEE
    • /
    • v.26 no.2
    • /
    • pp.319-328
    • /
    • 2022
  • Bearing plays an important role in the operation of most machinery, Therefore, when a defect occurs in the bearing, a fatal defect throughout the machine is generated. In this reason, bearing defects should be detected early. In this paper, we describe a method using Convolutional Neural Networks (SN-CNNs) based on continuous wavelet transformations and Switchable normalization for bearing defect detection models. The accuracy of the model was measured using the Case Western Reserve University (CWRU) bearing dataset. In addition, batch normalization methods and spectrogram images are used to compare model performance. The proposed model achieved over 99% testing accuracy in CWRU dataset.

A Study of Lightening SRGAN Using Knowledge Distillation (지식증류 기법을 사용한 SRGAN 경량화 연구)

  • Lee, Yeojin;Park, Hanhoon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.12
    • /
    • pp.1598-1605
    • /
    • 2021
  • Recently, convolutional neural networks (CNNs) have been widely used with excellent performance in various computer vision fields, including super-resolution (SR). However, CNN is computationally intensive and requires a lot of memory, making it difficult to apply to limited hardware resources such as mobile or Internet of Things devices. To solve these limitations, network lightening studies have been actively conducted to reduce the depth or size of pre-trained deep CNN models while maintaining their performance as much as possible. This paper aims to lighten the SR CNN model, SRGAN, using the knowledge distillation among network lightening technologies; thus, it proposes four techniques with different methods of transferring the knowledge of the teacher network to the student network and presents experiments to compare and analyze the performance of each technique. In our experimental results, it was confirmed through quantitative and qualitative evaluation indicators that student networks with knowledge transfer performed better than those without knowledge transfer, and among the four knowledge transfer techniques, the technique of conducting adversarial learning after transferring knowledge from the teacher generator to the student generator showed the best performance.

Cycle-accurate NPU Simulator and Performance Evaluation According to Data Access Strategies (Cycle-accurate NPU 시뮬레이터 및 데이터 접근 방식에 따른 NPU 성능평가)

  • Kwon, Guyun;Park, Sangwoo;Suh, Taeweon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.4
    • /
    • pp.217-228
    • /
    • 2022
  • Currently, there are increasing demands for applying deep neural networks (DNNs) in the embedded domain such as classification and object detection. The DNN processing in embedded domain often requires custom hardware such as NPU for acceleration due to the constraints in power, performance, and area. Processing DNN models requires a large amount of data, and its seamless transfer to NPU is crucial for performance. In this paper, we developed a cycle-accurate NPU simulator to evaluate diverse NPU microarchitectures. In addition, we propose a novel technique for reducing the number of memory accesses when processing convolutional layers in convolutional neural networks (CNNs) on the NPU. The main idea is to reuse data with memory interleaving, which recycles the overlapping data between previous and current input windows. Data memory interleaving makes it possible to quickly read consecutive data in unaligned locations. We implemented the proposed technique to the cycle-accurate NPU simulator and measured the performance with LeNet-5, VGGNet-16, and ResNet-50. The experiment shows up to 2.08x speedup in processing one convolutional layer, compared to the baseline.

Vision transformers for endoscopic pathological findings classification (내시경 병리소견 분류를 위한 비전 트랜스포머)

  • Ayana, Gelan;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.396-398
    • /
    • 2022
  • The endoscopic pathological findings of gastrointestinal tract (GIT) are important in the early diagnosis of colorectal cancer. Deep learning based on convolutional nueral network (CNN) has been implemented to solve the subjective analysis problem and to increase the performance of early detection of pathological findings. However, the desired performance is yet to be achieved and CNNs are computationally complex. To solve these problems, in this paper, we propose a vision transformer based endoscopic pathological findings classification for the early detection of colorectal cancer. Publicly available endoscopic images with three pathological findings, including esophagitis, polyps, and ulcerative colitis, each with 1000 images were used. Using our approach, we have achieved a test accuracy of 98% in classifying the three pathological findings.

  • PDF

Two-phase flow pattern online monitoring system based on convolutional neural network and transfer learning

  • Hong Xu;Tao Tang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4751-4758
    • /
    • 2022
  • Two-phase flow may almost exist in every branch of the energy industry. For the corresponding engineering design, it is very essential and crucial to monitor flow patterns and their transitions accurately. With the high-speed development and success of deep learning based on convolutional neural network (CNN), the study of flow pattern identification recently almost focused on this methodology. Additionally, the photographing technique has attractive implementation features as well, since it is normally considerably less expensive than other techniques. The development of such a two-phase flow pattern online monitoring system is the objective of this work, which seldom studied before. The ongoing preliminary engineering design (including hardware and software) of the system are introduced. The flow pattern identification method based on CNNs and transfer learning was discussed in detail. Several potential CNN candidates such as ALexNet, VggNet16 and ResNets were introduced and compared with each other based on a flow pattern dataset. According to the results, ResNet50 is the most promising CNN network for the system owing to its high precision, fast classification and strong robustness. This work can be a reference for the online monitoring system design in the energy system.

Detection of Proximal Caries Lesions with Deep Learning Algorithm (심층학습 알고리즘을 활용한 인접면 우식 탐지)

  • Hyuntae, Kim;Ji-Soo, Song;Teo Jeon, Shin;Hong-Keun, Hyun;Jung-Wook, Kim;Ki-Taeg, Jang;Young-Jae, Kim
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.49 no.2
    • /
    • pp.131-139
    • /
    • 2022
  • This study aimed to evaluate the effectiveness of deep convolutional neural networks (CNNs) for diagnosis of interproximal caries in pediatric intraoral radiographs. A total of 500 intraoral radiographic images of first and second primary molars were used for the study. A CNN model (Resnet 50) was applied for the detection of proximal caries. The diagnostic accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curve, and area under ROC curve (AUC) were calculated on the test dataset. The diagnostic accuracy was 0.84, sensitivity was 0.74, and specificity was 0.94. The trained CNN algorithm achieved AUC of 0.86. The diagnostic CNN model for pediatric intraoral radiographs showed good performance with high accuracy. Deep learning can assist dentists in diagnosis of proximal caries lesions in pediatric intraoral radiographs.

Variations of AlexNet and GoogLeNet to Improve Korean Character Recognition Performance

  • Lee, Sang-Geol;Sung, Yunsick;Kim, Yeon-Gyu;Cha, Eui-Young
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.205-217
    • /
    • 2018
  • Deep learning using convolutional neural networks (CNNs) is being studied in various fields of image recognition and these studies show excellent performance. In this paper, we compare the performance of CNN architectures, KCR-AlexNet and KCR-GoogLeNet. The experimental data used in this paper is obtained from PHD08, a large-scale Korean character database. It has 2,187 samples of each Korean character with 2,350 Korean character classes for a total of 5,139,450 data samples. In the training results, KCR-AlexNet showed an accuracy of over 98% for the top-1 test and KCR-GoogLeNet showed an accuracy of over 99% for the top-1 test after the final training iteration. We made an additional Korean character dataset with fonts that were not in PHD08 to compare the classification success rate with commercial optical character recognition (OCR) programs and ensure the objectivity of the experiment. While the commercial OCR programs showed 66.95% to 83.16% classification success rates, KCR-AlexNet and KCR-GoogLeNet showed average classification success rates of 90.12% and 89.14%, respectively, which are higher than the commercial OCR programs' rates. Considering the time factor, KCR-AlexNet was faster than KCR-GoogLeNet when they were trained using PHD08; otherwise, KCR-GoogLeNet had a faster classification speed.

Traffic Data Generation Technique for Improving Network Attack Detection Using Deep Learning (네트워크 공격 탐지 성능향상을 위한 딥러닝을 이용한 트래픽 데이터 생성 연구)

  • Lee, Wooho;Hahm, Jaegyoon;Jung, Hyun Mi;Jeong, Kimoon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.1-7
    • /
    • 2019
  • Recently, various approaches to detect network attacks using machine learning have been studied and are being applied to detect new attacks and to increase precision. However, the machine learning method is dependent on feature extraction and takes a long time and complexity. It also has limitation of performace due to learning data imbalance. In this study, we propose a method to solve the degradation of classification performance due to imbalance of learning data among the limit points of detection system. To do this, we generate data using Generative Adversarial Networks (GANs) and propose a classification method using Convolutional Neural Networks (CNNs). Through this approach, we can confirm that the accuracy is improved when applied to the NSL-KDD and UNSW-NB15 datasets.

Earthquake detection based on convolutional neural network using multi-band frequency signals (다중 주파수 대역 convolutional neural network 기반 지진 신호 검출 기법)

  • Kim, Seung-Il;Kim, Dong-Hyun;Shin, Hyun-Hak;Ku, Bonhwa;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • In this paper, a deep learning-based detection and classification using multi-band frequency signals is presented for detecting earthquakes prevalent in Korea. Based on an analysis of the previous earthquakes in Korea, it is observed that multi-band signals are appropriate for classifying earthquake signals. Therefore, in this paper, we propose a deep CNN (Convolutional Neural Network) using multi-band signals as training data. The proposed algorithm extracts the multi-band signals (Low/Medium/High frequency) by applying band pass filters to mel-spectrum of earthquake signals. Then, we construct three CNN architecture pipelines for extracting features and classifying the earthquake signals by a late fusion of the three CNNs. We validate effectiveness of the proposed method by performing various experiments for classifying the domestic earthquake signals detected in 2018.

Sex determination from lateral cephalometric radiographs using an automated deep learning convolutional neural network

  • Khazaei, Maryam;Mollabashi, Vahid;Khotanlou, Hassan;Farhadian, Maryam
    • Imaging Science in Dentistry
    • /
    • v.52 no.3
    • /
    • pp.239-244
    • /
    • 2022
  • Purpose: Despite the proliferation of numerous morphometric and anthropometric methods for sex identification based on linear, angular, and regional measurements of various parts of the body, these methods are subject to error due to the observer's knowledge and expertise. This study aimed to explore the possibility of automated sex determination using convolutional neural networks(CNNs) based on lateral cephalometric radiographs. Materials and Methods: Lateral cephalometric radiographs of 1,476 Iranian subjects (794 women and 682 men) from 18 to 49 years of age were included. Lateral cephalometric radiographs were considered as a network input and output layer including 2 classes(male and female). Eighty percent of the data was used as a training set and the rest as a test set. Hyperparameter tuning of each network was done after preprocessing and data augmentation steps. The predictive performance of different architectures (DenseNet, ResNet, and VGG) was evaluated based on their accuracy in test sets. Results: The CNN based on the DenseNet121 architecture, with an overall accuracy of 90%, had the best predictive power in sex determination. The prediction accuracy of this model was almost equal for men and women. Furthermore, with all architectures, the use of transfer learning improved predictive performance. Conclusion: The results confirmed that a CNN could predict a person's sex with high accuracy. This prediction was independent of human bias because feature extraction was done automatically. However, for more accurate sex determination on a wider scale, further studies with larger sample sizes are desirable.