• Title/Summary/Keyword: Deep Belief Networks

Search Result 12, Processing Time 0.033 seconds

Latent Keyphrase Extraction Using Deep Belief Networks

  • Jo, Taemin;Lee, Jee-Hyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.153-158
    • /
    • 2015
  • Nowadays, automatic keyphrase extraction is considered to be an important task. Most of the previous studies focused only on selecting keyphrases within the body of input documents. These studies overlooked latent keyphrases that did not appear in documents. In addition, a small number of studies on latent keyphrase extraction methods had some structural limitations. Although latent keyphrases do not appear in documents, they can still undertake an important role in text mining because they link meaningful concepts or contents of documents and can be utilized in short articles such as social network service, which rarely have explicit keyphrases. In this paper, we propose a new approach that selects qualified latent keyphrases from input documents and overcomes some structural limitations by using deep belief networks in a supervised manner. The main idea of this approach is to capture the intrinsic representations of documents and extract eligible latent keyphrases by using them. Our experimental results showed that latent keyphrases were successfully extracted using our proposed method.

Dysarthric speaker identification with different degrees of dysarthria severity using deep belief networks

  • Farhadipour, Aref;Veisi, Hadi;Asgari, Mohammad;Keyvanrad, Mohammad Ali
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.643-652
    • /
    • 2018
  • Dysarthria is a degenerative disorder of the central nervous system that affects the control of articulation and pitch; therefore, it affects the uniqueness of sound produced by the speaker. Hence, dysarthric speaker recognition is a challenging task. In this paper, a feature-extraction method based on deep belief networks is presented for the task of identifying a speaker suffering from dysarthria. The effectiveness of the proposed method is demonstrated and compared with well-known Mel-frequency cepstral coefficient features. For classification purposes, the use of a multi-layer perceptron neural network is proposed with two structures. Our evaluations using the universal access speech database produced promising results and outperformed other baseline methods. In addition, speaker identification under both text-dependent and text-independent conditions are explored. The highest accuracy achieved using the proposed system is 97.3%.

Feature Extraction Based on DBN-SVM for Tone Recognition

  • Chao, Hao;Song, Cheng;Lu, Bao-Yun;Liu, Yong-Li
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.91-99
    • /
    • 2019
  • An innovative tone modeling framework based on deep neural networks in tone recognition was proposed in this paper. In the framework, both the prosodic features and the articulatory features were firstly extracted as the raw input data. Then, a 5-layer-deep deep belief network was presented to obtain high-level tone features. Finally, support vector machine was trained to recognize tones. The 863-data corpus had been applied in experiments, and the results show that the proposed method helped improve the recognition accuracy significantly for all tone patterns. Meanwhile, the average tone recognition rate reached 83.03%, which is 8.61% higher than that of the original method.

Spherical Signature Description of 3D Point Cloud and Environmental Feature Learning based on Deep Belief Nets for Urban Structure Classification (도시 구조물 분류를 위한 3차원 점 군의 구형 특징 표현과 심층 신뢰 신경망 기반의 환경 형상 학습)

  • Lee, Sejin;Kim, Donghyun
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.115-126
    • /
    • 2016
  • This paper suggests the method of the spherical signature description of 3D point clouds taken from the laser range scanner on the ground vehicle. Based on the spherical signature description of each point, the extractor of significant environmental features is learned by the Deep Belief Nets for the urban structure classification. Arbitrary point among the 3D point cloud can represents its signature in its sky surface by using several neighborhood points. The unit spherical surface centered on that point can be considered to accumulate the evidence of each angular tessellation. According to a kind of point area such as wall, ground, tree, car, and so on, the results of spherical signature description look so different each other. These data can be applied into the Deep Belief Nets, which is one of the Deep Neural Networks, for learning the environmental feature extractor. With this learned feature extractor, 3D points can be classified due to its urban structures well. Experimental results prove that the proposed method based on the spherical signature description and the Deep Belief Nets is suitable for the mobile robots in terms of the classification accuracy.

Voice Activity Detection based on DBN using the Likelihood Ratio (우도비를 이용한 DBN 기반의 음성 검출기)

  • Kim, S.K.;Lee, S.M.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.3
    • /
    • pp.145-150
    • /
    • 2014
  • In this paper, we propose a novel scheme to improve the performance of a voice activity detection(VAD) which is based on the deep belief networks(DBN) with the likelihood ratio(LR). The proposed algorithm applies the DBN learning method which is trained in order to minimize the probability of detection error instead of the conventional decision rule using geometric mean. Experimental results show that the proposed algorithm yields better results compared to the conventional VAD algorithm in various noise environments.

  • PDF

Enhanced technique for Arabic handwriting recognition using deep belief network and a morphological algorithm for solving ligature segmentation

  • Essa, Nada;El-Daydamony, Eman;Mohamed, Ahmed Atwan
    • ETRI Journal
    • /
    • v.40 no.6
    • /
    • pp.774-787
    • /
    • 2018
  • Arabic handwriting segmentation and recognition is an area of research that has not yet been fully understood. Dealing with Arabic ligature segmentation, where the Arabic characters are connected and unconstrained naturally, is one of the fundamental problems when dealing with the Arabic script. Arabic character-recognition techniques consider ligatures as new classes in addition to the classes of the Arabic characters. This paper introduces an enhanced technique for Arabic handwriting recognition using the deep belief network (DBN) and a new morphological algorithm for ligature segmentation. There are two main stages for the implementation of this technique. The first stage involves an enhanced technique of the Sari segmentation algorithm, where a new ligature segmentation algorithm is developed. The second stage involves the Arabic character recognition using DBNs and support vector machines (SVMs). The two stages are tested on the IFN/ENIT and HACDB databases, and the results obtained proved the effectiveness of the proposed algorithm compared with other existing systems.

Deep Learning Architectures and Applications (딥러닝의 모형과 응용사례)

  • Ahn, SungMahn
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.127-142
    • /
    • 2016
  • Deep learning model is a kind of neural networks that allows multiple hidden layers. There are various deep learning architectures such as convolutional neural networks, deep belief networks and recurrent neural networks. Those have been applied to fields like computer vision, automatic speech recognition, natural language processing, audio recognition and bioinformatics where they have been shown to produce state-of-the-art results on various tasks. Among those architectures, convolutional neural networks and recurrent neural networks are classified as the supervised learning model. And in recent years, those supervised learning models have gained more popularity than unsupervised learning models such as deep belief networks, because supervised learning models have shown fashionable applications in such fields mentioned above. Deep learning models can be trained with backpropagation algorithm. Backpropagation is an abbreviation for "backward propagation of errors" and a common method of training artificial neural networks used in conjunction with an optimization method such as gradient descent. The method calculates the gradient of an error function with respect to all the weights in the network. The gradient is fed to the optimization method which in turn uses it to update the weights, in an attempt to minimize the error function. Convolutional neural networks use a special architecture which is particularly well-adapted to classify images. Using this architecture makes convolutional networks fast to train. This, in turn, helps us train deep, muti-layer networks, which are very good at classifying images. These days, deep convolutional networks are used in most neural networks for image recognition. Convolutional neural networks use three basic ideas: local receptive fields, shared weights, and pooling. By local receptive fields, we mean that each neuron in the first(or any) hidden layer will be connected to a small region of the input(or previous layer's) neurons. Shared weights mean that we're going to use the same weights and bias for each of the local receptive field. This means that all the neurons in the hidden layer detect exactly the same feature, just at different locations in the input image. In addition to the convolutional layers just described, convolutional neural networks also contain pooling layers. Pooling layers are usually used immediately after convolutional layers. What the pooling layers do is to simplify the information in the output from the convolutional layer. Recent convolutional network architectures have 10 to 20 hidden layers and billions of connections between units. Training deep learning networks has taken weeks several years ago, but thanks to progress in GPU and algorithm enhancement, training time has reduced to several hours. Neural networks with time-varying behavior are known as recurrent neural networks or RNNs. A recurrent neural network is a class of artificial neural network where connections between units form a directed cycle. This creates an internal state of the network which allows it to exhibit dynamic temporal behavior. Unlike feedforward neural networks, RNNs can use their internal memory to process arbitrary sequences of inputs. Early RNN models turned out to be very difficult to train, harder even than deep feedforward networks. The reason is the unstable gradient problem such as vanishing gradient and exploding gradient. The gradient can get smaller and smaller as it is propagated back through layers. This makes learning in early layers extremely slow. The problem actually gets worse in RNNs, since gradients aren't just propagated backward through layers, they're propagated backward through time. If the network runs for a long time, that can make the gradient extremely unstable and hard to learn from. It has been possible to incorporate an idea known as long short-term memory units (LSTMs) into RNNs. LSTMs make it much easier to get good results when training RNNs, and many recent papers make use of LSTMs or related ideas.

Deep Structured Learning: Architectures and Applications

  • Lee, Soowook
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.262-265
    • /
    • 2018
  • Deep learning, a sub-field of machine learning changing the prospects of artificial intelligence (AI) because of its recent advancements and application in various field. Deep learning deals with algorithms inspired by the structure and function of the brain called artificial neural networks. This works reviews basic architecture and recent advancement of deep structured learning. It also describes contemporary applications of deep structured learning and its advantages over the treditional learning in artificial interlligence. This study is useful for the general readers and students who are in the early stage of deep learning studies.

Kriging Regressive Deep Belief WSN-Assisted IoT for Stable Routing and Energy Conserved Data Transmission

  • Muthulakshmi, L.;Banumathi, A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.91-102
    • /
    • 2022
  • With the evolution of wireless sensor network (WSN) technology, the routing policy has foremost importance in the Internet of Things (IoT). A systematic routing policy is one of the primary mechanics to make certain the precise and robust transmission of wireless sensor networks in an energy-efficient manner. In an IoT environment, WSN is utilized for controlling services concerning data like, data gathering, sensing and transmission. With the advantages of IoT potentialities, the traditional routing in a WSN are augmented with decision-making in an energy efficient manner to concur finer optimization. In this paper, we study how to combine IoT-based deep learning classifier with routing called, Kriging Regressive Deep Belief Neural Learning (KR-DBNL) to propose an efficient data packet routing to cope with scalability issues and therefore ensure robust data packet transmission. The KR-DBNL method includes four layers, namely input layer, two hidden layers and one output layer for performing data transmission between source and destination sensor node. Initially, the KR-DBNL method acquires the patient data from different location. Followed by which, the input layer transmits sensor nodes to first hidden layer where analysis of energy consumption, bandwidth consumption and light intensity are made using kriging regression function to perform classification. According to classified results, sensor nodes are classified into higher performance and lower performance sensor nodes. The higher performance sensor nodes are then transmitted to second hidden layer. Here high performance sensor nodes neighbouring sensor with higher signal strength and frequency are selected and sent to the output layer where the actual data packet transmission is performed. Experimental evaluation is carried out on factors such as energy consumption, packet delivery ratio, packet loss rate and end-to-end delay with respect to number of patient data packets and sensor nodes.

Network Traffic Classification Based on Deep Learning

  • Li, Junwei;Pan, Zhisong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4246-4267
    • /
    • 2020
  • As the network goes deep into all aspects of people's lives, the number and the complexity of network traffic is increasing, and traffic classification becomes more and more important. How to classify them effectively is an important prerequisite for network management and planning, and ensuring network security. With the continuous development of deep learning, more and more traffic classification begins to use it as the main method, which achieves better results than traditional classification methods. In this paper, we provide a comprehensive review of network traffic classification based on deep learning. Firstly, we introduce the research background and progress of network traffic classification. Then, we summarize and compare traffic classification based on deep learning such as stack autoencoder, one-dimensional convolution neural network, two-dimensional convolution neural network, three-dimensional convolution neural network, long short-term memory network and Deep Belief Networks. In addition, we compare traffic classification based on deep learning with other methods such as based on port number, deep packets detection and machine learning. Finally, the future research directions of network traffic classification based on deep learning are prospected.