Voice Activity Detection based on DBN using the Likelihood Ratio

우도비를 이용한 DBN 기반의 음성 검출기

  • Received : 2014.07.25
  • Accepted : 2014.08.19
  • Published : 2014.08.31

Abstract

In this paper, we propose a novel scheme to improve the performance of a voice activity detection(VAD) which is based on the deep belief networks(DBN) with the likelihood ratio(LR). The proposed algorithm applies the DBN learning method which is trained in order to minimize the probability of detection error instead of the conventional decision rule using geometric mean. Experimental results show that the proposed algorithm yields better results compared to the conventional VAD algorithm in various noise environments.

본 논문에서는 입력된 신호에 의해 결정되는 각 주파수 밴드별 우도비(likelihood ratio, LR)를 deep belief networks(DBN)의 입력층으로 이용하는 새로운 음성 검출기(voice activity detection, VAD) 알고리즘을 제안한다. 기존의 통계적 모델 기반의 음성 검출기는 음성 구간을 판단하기 위해 우도비를 기하 평균을 이용한 결정식을 사용한다. 제안된 음성 검출기는 이 결정식을 대신해 DBN을 이용하여, 오검출 확률을 최소화 하도록 학습을 한다. 제안된 DBN 기반의 음성 검출 알고리즘은 통계적 모델 기반의 음성 검출기의 성능을 개선한 support vector machine(SVM) 기반의 음성 검출기와 정상 및 비정상 잡음 환경에서 다양한 조건을 부과하여 비교하였다. 제안된 알고리즘이 기존의 SVM 기반의 알고리즘보다 전체 오분류 확률 [0.7, 2.7]의 향상 폭을 보였다.

Keywords