• 제목/요약/키워드: Decrease of Surface Temperature

검색결과 901건 처리시간 0.025초

나노결정질 Ni-W 합금전착의 내부응력에 미치는 공정조건 변수의 영향 (Influences of Electrodeposition Variables on the Internal Stess of Nanocrystalline Ni-W Films)

  • 김경태;이정자;황운석
    • Corrosion Science and Technology
    • /
    • 제11권6호
    • /
    • pp.275-279
    • /
    • 2012
  • Ni-W alloy deposits have lately attracted the interest as an alternative surface treatment method for hard chromium electrodeposits because of higher wear resistance, hardness at high temperature, and corrosion resistance. This study deals with influences of process variables, such as electodeposition current density, plating temperature and pH, on the internal stress of Ni-W nanocrystalline deposits. The internal stress was increased with increasing the applied current density. With increasing applied current density, the grain size of the deposit decreases and concentration of hydrogen in the deposit increases. The subsequent release of the hydrogen results in shrinkage of the deposit and the introduction of tensile stress in the deposit. Consequently, for layers deposited at high current density, cracking occurs readily owing to high tensile stress value. By increasing the temperature of the electrodeposition from $60^{\circ}C$ to $80^{\circ}C$, the internal stress was decreased. It seems that an increase in the number of active ions overcoming the activation energy at elevated temperature caused a decline in the concentration polarization and surface diffusion. It decreased the level of hydrogen absorption due to the lessened hydrogen evolution reaction. Therefore, the lower level of hydrogen absorption degenerated the hydride on the surface of the electrode, resulting in the reduction of the internal stress of the deposits. By increasing the pH of the electrodeposition from 5.6 to 6.8, the internal stress in the deposits were slightly decreased. It is considered that the decrease in internal stess of deposits was due to supply of W complex compound in cathode surface, and hydrogen ion resulted from decrease of activity.

$SnO_2$ 수용전극특성에 미치는 Sb첨가의 영향 (Effects of Sb doping on the Characteristis of $SnO_2$ Transparent Electrodes)

  • 이정한
    • 대한전자공학회논문지
    • /
    • 제13권3호
    • /
    • pp.16-21
    • /
    • 1976
  • 염화제이석을 출발물질로 하여 예열을 병용한 광무부착방식으로 유리 박판 위에 SnOf수명전극을 형성시켜 그의 Sheet 무항과 광투과률에 미치는 Sb연가량와 영향을 실행적으로 검토하였다. Sheet 저항을 전극작성시의 기판유리의 표면 온도가 높을수록 낮아지며 백색광에 대한 투과률을 Sheet 저항저하와 더불어 증가되는데 최대 약 93{%)였다. 기판표면온도는 700(℃) 부근이 적당하며 같은 표이온도의 경우 출발물질에서의 Sb/Sn의 비율이 약 0.6(%)일 경우 최저의 저항치를 얻을 수 있었다. Transparent eloctroaes of polycrystalline till-oxide films doped with antimony are prepared on the substrate of microscopic cover g1ass by modified spray method and from SnCl4 Solution. Their electrical and optical properties are investigated in relation to the surface temperature of the substrate glass and to antimony concentration in the starting materials. The sheet·resiststrace of the film electrodes and transmittance for incandescent light depen on tile antimony concentration and surface temperature of substrates at the time of making films. The transmittance increases with decrease of sheet resistance of the film. The optimum sheet·resistance was obtianed in the case of the antimony concentration 0.6(%) approximately , and the max. transmittance was 93(%).

  • PDF

Effect of pressure and temperature on bulk micro defect and denuded zone in nitrogen ambient furnace

  • Choi, Young-Kyu;Jeong, Se-Young;Sim, Bok-Cheol
    • 한국결정성장학회지
    • /
    • 제26권3호
    • /
    • pp.121-125
    • /
    • 2016
  • The effect of temperature and pressure in the nitrogen ambient furnace on bulk micro defect (BMD) and denuded zone (Dz) is experimentally investigated. It is found that as pressure increases, Dz depth increases with a small decrease of BMD density in the range of temperature, $100{\sim}300^{\circ}C$. BMD density with hot isostatic pressure treatment (HIP) at temperature of $850^{\circ}C$ is higher than that without HIP while Dz depth is lower due to much higher BMD density. As the pressure increases, BMD density is increased and saturated to a critical value, and Dz depth increases even if BMD density is saturated. The concentration of nitrogen increases near the surface with increasing pressure, and the peak of the concentration moves closer to the surface. The nitrogen is gathered near the surface, and does not become in-diffusion to the bulk of the wafer. The silicon nitride layer near the surface prevents to inject the additional nitrogen into the bulk of the wafer across the layer. The nitrogen does not affect the formation of BMD. On the other hand, the oxygen is moved into the bulk of the wafer by increasing pressure. Dz depth from the surface is extended into the bulk because the nuclei of BMD move into the bulk of the wafer.

공동주택 건축물 층수완화에 따른 열환경 평가에 관한 연구 (A Study on Evaluation of Thermal Environment Following the Alleviation of the Limit on Number of Floors of Apartment Complexes)

  • 류지원;정응호;아키라 호야노
    • 한국주거학회논문집
    • /
    • 제22권3호
    • /
    • pp.93-100
    • /
    • 2011
  • The objective of this study is to provide basic objective data which can be utilized as an adjustment criterion for the alleviation of the limit on the number of floors of buildings by quantitatively evaluates the effect of the alleviation of the limit on the number of floors of buildings in apartment complexes on thermal environment of apartment complexes using data obtained from apartments in a class 2 general residential area. In this study, we carried out a thermal environment analysis utilizing the simulation of a virtual object area. The result is summarized as follows: The result of analyzing the entire surface temperature showed an equal decrease of surface temperature due to shadow in all scenarios and high floors showed a tendency of low surface temperature during daytime as the rate of shadow the high floors increase. This influences not only the surface temperature but also HIP and is judged to greatly contribute to the alleviation of the heat island effect. Also, the reason why HIP at high floors shows high values before sunrise and after sunset is thought to be because the concrete wall of the building maintains a high temperature during nighttime by absorbing and storing sunlight during daytime instead of reflecting it since it has low reflectance.

Surface Oxidation Effect During high Temperature Vacuum Annealing on the Electrical Conductivity of ZnO thin Films Deposited by ALD

  • Kim, Jin-Yong;Choi, Yong-June;Park, Hyung-Ho
    • 마이크로전자및패키징학회지
    • /
    • 제19권2호
    • /
    • pp.73-78
    • /
    • 2012
  • The chemical, electrical, and optical properties of ZnO and Al-doped ZnO films after high temperature annealing were studied. The resistivity increased significantly after annealing at $600^{\circ}C$ under $10^{-10}$ Torr atmosphere. The mechanism of the resistivity change was explored using photoemission spectroscopy and photoluminescence spectrometer. The results indicated that the amount of oxygen deficient region O-Zn bonds decreased and oxygen vacancy was decreased after the high temperature vacuum annealing. The increase in the resistivity of ZnO and Al-doped ZnO films was resulted from the decrease in carrier concentration due to a decrease in the amount of oxygen deficiency.

열교환기 휜에서의 착상 거동 (Behavior of frost formed on heat exchanger fins)

  • 김정수;이관수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2334-2339
    • /
    • 2008
  • This paper proposes an improved mathematical model for predicting the frosting behavior on a two-dimensional fin considering the heat conduction of heat exchanger fins under frosting conditions. The model consists of laminar flow equation in airflow, diffusion equation of water vapor for frost layer, and heat conduction equation in fin, and these are coupled together. In this model, the change in three-dimensional airside airflow caused by frost growth is accounted for. The fin surface temperature increased toward the fin tip due to the fin heat conduction. On the contrary, the temperature gradient in the airflow direction(x-dir.) is small throughout the entire fin. The frost thickness in the direction perpendicular to airflow, i.e. z-dir., decreases exponentially toward the fin tip due to non-uniform temperature distribution. The rate of decrease of heat transfer in the airflow direction is high compared to that in the z-direction due to more decrease in the sensible and latent heat rate in x-direction.

  • PDF

The Effect of an Optical Clearing Agent on Tissue Prior to 1064-nm Laser Therapy

  • Youn, Jong-In
    • Medical Lasers
    • /
    • 제10권3호
    • /
    • pp.146-152
    • /
    • 2021
  • Background and Objectives Although lasers have been widely applied in tissue treatment, the light penetration depth in tissues is limited by the tissue turbidity and affected by its absorption and scattering characteristics. This study investigated the effect of using an optical clearing agent (OCA) on tissue to improve the therapeutic effect of 1064 nm wavelength laser light by reducing the heat generated on the skin surface and increasing the penetration depth. Materials and Methods A diode laser (λ = 1064 nm) was applied to a porcine specimen with and without OCA to investigate the penetration depth of the laser light and temperature distribution. A numerical simulation using the finite element method was performed to investigate the temperature distribution of the specimen compared to ex-vivo experiments using a thermocouple and double-integrating sphere to measure the temperature profile and optical properties of the tissue, respectively. Results Simulation results showed a decrease in tissue surface temperature with increased penetration depth when the OCA was applied. Furthermore, both absorption and scattering coefficients decreased with the application of OCA. In ex-vivo experiments, temperatures decreased for the tissue surface and the fat layer with the OCA, but not for the muscle layer. Conclusion The use of an OCA may be helpful for reducing surface heat generation and enhance the light penetration depth in various near-infrared laser treatments.

졸-겔 공정에 의해 제조된 ITO (Indium-Tin-Oxide) 박막의 표면처리 (Surface Treatment of ITO (Indium-Tin-Oxide) thin Films Prepared by Sol-Gel Process)

  • 정승용;윤영훈;연석주
    • 한국세라믹학회지
    • /
    • 제44권6호
    • /
    • pp.313-318
    • /
    • 2007
  • ITO (Indium-tin oxide) thin films have been prepared by a sol-gel spinning coating method and fired and annealed in the temperature range of $450-600^{\circ}C$. The XRD patterns of the films indicated the main peak of (222) plane and showed higher crystallinity with increasing an annealing temperature. The surface of the ITO thin films were treated with 0.1 N HCl 20% solution at room temperature. The effects of surface treatment on electrical properties and surface morphologies of the ITO films were investigated with the results of sheet resistance and FE-SEM, AFM images. The samples, subsequently treated with acidic solution for 40 sec showed the sheet resistance of $0.982\;k{\Omega}/square$. The surface treatment using acidic solution diminished the RMS (root mean square) value and the residual carbon content of the ITO films. It seemed that the acid-cleaning of the ITO thin films lead to the decrease of surface roughness and sheet resistance.

미세 원형 충돌수제트의 부분 대류비등에 있어서 자유표면/잠입 제트의 국소 열전달 특성 (Local Heat Transfer Characteristics in Convective Partial Boiling by Impingement of Free-Surface/Submerged Circular Water Jets)

  • 조형희;우성제;신창환
    • 설비공학논문집
    • /
    • 제14권6호
    • /
    • pp.441-449
    • /
    • 2002
  • Single-phase convection and partial nucleate boiling in free-surface and submerged jet impingements of subcooled water ejected through a 2-mm-diameter circular pipe nozzle were investigated by local measurements. Effects of jet velocity and nozzle-to-imping-ing surface distance as well as heat flux on distributions of wall temperature and heat transfer coefficients were considered. Incipience of boiling began from far downstream in contrast with the cases of the planar water jets of high Reynolds numbers. Heat flux increase and velocity decrease reduced the temperature difference between stagnation and far downstream regions with the increasing influence of boiling in partial boiling regime. The chance in nozzle-to-impinging surface distance from H/d=1 to 12 had a significant effect on heat transfer around the stagnation point of the submerged jet, but not for the free-surface jet. The submerged jet provided the lower cooling performance than the free-surface jet due to the entrainment of the pool fluid of which temperature increased.

사용 환경조건에 따른 Epoxy/Glass Fiber 복합재료의 표면특성 (Surface properties of epoxy/glass Eber composites by environmental conditions)

  • 임경범;이백수;황명환;김윤선;유도현;이덕출
    • 한국진공학회지
    • /
    • 제9권3호
    • /
    • pp.279-284
    • /
    • 2000
  • 본 연구는 옥외용 epoxy/glass fiber의 열화과정을 분석하기 위하여 FRP 적층판을 고온과 수에 노출시켰다. 열화과정은 접촉각, 표면전위감쇠, 표면저항률의 비교에 의해 평가하였다. 젖음성의 변화는 열처리 시료에서 $200^{\circ}C$까지 접촉각이 증가하였지만 수분처리 시료는 감소하였다. 표면전위감쇠 특성은 수분처리 시료에서는 감소하지만, 열처리 시료는 미 처리와 비교해서 증가하였다. 또한, 표면저항률은 접촉각의 변화와 같은 경향을 보이고 있다.

  • PDF