• Title/Summary/Keyword: Decoupling control method

Search Result 125, Processing Time 0.029 seconds

A PI Control Algorithm with Zero Static Misadjustment for Tracking the Harmonic Current of Three-Level APFs

  • He, Yingjie;Liu, Jinjun;Wang, Zhaoan;Zou, Yunping
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.175-182
    • /
    • 2014
  • Tracking harmonic current quickly and precisely is one of the keys to designing active power filters (APF). In the past, the current state feedback decoupling PI control was an effective means for three-phase systems in the current control of constant voltage constant frequency inverters and high frequency PWM reversible rectifiers. This paper analyzes in detail the limitation of the conventional PI conditioner in the APF application field and presents a novel PI control method. Canceling the delay of one sampling period and the misadjustment for tracking the harmonic current is the key problem of this PI control. In this PI control, the predictive output current value is obtained by a state observer. The delay of one sampling period is remedied in this digital control system by the state observer. The predictive harmonic command current value is obtained by a repetitive predictor synchronously. The repetitive predictor can achieve better predictions of the harmonic current. By this means, the misadjustment of the conventional PI control for tracking the harmonic current is cancelled. The experiment results with a three-level NPC APF indicate that the steady-state accuracy and dynamic response of this method are satisfying when the proposed control scheme is implemented.

Slip Compensation for Rotor Time Constant Variation of Induction Motor Drives (유도전동기의 회전자 시정수 변동에 대한 슬립 보상)

  • 이수원;전칠환
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.487-492
    • /
    • 2000
  • This paper presents a novel method of slip-compensation for rotor time constant variation in indirect field orientation control of induction motor drives. In field oriented control due to variation of rotor time constant, decoupling between the flux and torque components of stator current is lost and hence, the performance of operation of the machine deteriorates. To solve the problem, the q-axis is aligned to reference frame without phase difference by comparing the real flux component with the reference flux component. Then to compensate the slip, PI controller is used. The proposed method keeps a constant slip by compensating the gain of direct slip frequency when the rotor resistance of induction motor varies. To prove the validations of the proposed algorithm in the paper, computer simulations and experiments are executed.

  • PDF

A Study of Non-staggered Grid Approach for Incompressible Heat and Fluid Flow Analysis (비압축성 열유동 해석을 위한 비엇갈림 격자법에 대한 연구)

  • Kim Jongtae;Kim Sang-Baik;Kim Hee-Dong;Maeng Joo-sung
    • Journal of computational fluids engineering
    • /
    • v.7 no.1
    • /
    • pp.10-19
    • /
    • 2002
  • The non-staggered(collocated) grid approach in which all the solution variables are located at the centers of control volumes is very popular for incompressible flow analyses because of its numerical efficiency on the curvilinear or unstructured grids. Rhie and Chow's paper is the first in using non-staggered grid method for SIMPLE algorithm, where pressure weighted interpolation was used to prevent decoupling of pressure and velocity. But it has been known that this non-staggered grid method has stability problems when pressure fields are nonlinear like in natural convection flows. Also Rhie-Chow scheme generates large numerical diffusion near curved walls. The cause of these unwanted problems is too large pressure damping term compared to the magnitude of face velocity. In this study the magnitude of pressure damping term of Rhie-Chow's method is limited to 1∼10% of face velocity to prevent physically unreasonable solutions. The wall pressure extrapolation which is necessary for cell-centered FVM is another source of numerical errors. Some methods are applied in a unstructured FV solver and analyzed in view of numerical accuracy. Here, two natural convection problems are solved to check the effect of the Rhie-Chow's method on numerical stability. And numerical diffusion from Rhie-Chow's method is studied by solving the inviscid flow around a circular cylinder.

A Study of the Three Port NPC based DAB Converter for the Bipolar DC Grid (양극성 직류 배전망에 적용 가능한 3포트 NPC 기반의 DAB 컨버터에 대한 연구)

  • Yun, Hyeok-Jin;Kim, Myoungho;Baek, Ju-Won;Kim, Ju-Yong;Kim, Hee-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.336-344
    • /
    • 2017
  • This paper presents the three-port DC-DC converter modeling and controller design procedure, which is part of the solid-state transformer (SST) to interface medium voltage AC grid to bipolar DC distribution network. Due to the high primary side DC link voltage, the proposed converter employs the three-level neutral point clamped (NPC) topology at the primary side and 2-two level half bridge circuits for each DC distribution network. For the proposed converter particular structure, this paper conducts modeling the three winding transformer and the power transfer between each port. A decoupling method is adopted to simplify the power transfer model. The voltage controller design procedure is presented. In addition, the output current sharing controller is employed for current balancing between the parallel-connected secondary output ports. The proposed circuit and controller performance are verified by experimental results using a 30 kW prototype SST system.

A Novel Input and Output Harmonic Elimination Technique for the Single-Phase PV Inverter Systems with Maximum Power Point Tracking (최대출력추종 제어를 포함한 단상 태양광 인버터를 위한 새로운 입출력 고조파 제거법)

  • Amin, Saghir;Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.207-209
    • /
    • 2019
  • This paper proposes a grid-tied photovoltaic (PV) system, consisting of Voltage-fed dual-active-bridge (DAB) dc-dc converter with single phase inverter. The proposed converter allows a small dc-link capacitor, so that system reliability can be improved by replacing electrolytic capacitors with film capacitors. The double line frequency free maximum power point tracking (MPPT) is also realized in the proposed converter by using Ripple Correlation method. First of all, to eliminate the double line frequency ripple which influence the reduction of DC source capacitance, control is developed. Then, a designing of Current control in DQ frame is analyzed and to fulfill the international harmonics standards such as IEEE 519 and P1547, $3^{rd}$ harmonic in the grid is directly compensated by the feedforward terms generated by the PR controller with the grid current in stationary frame to achieve desire Total Harmonic Distortion (THD). 5-kW PV converter and inverter module with a small dc-link film capacitor was built in the laboratory with the proposed control and MPPT algorithm. Experimental results are given to validate the converter performance.

  • PDF

A Voltage Control Method for Capacitor-Split-type Active Power Decoupling Circuits (캐패시터-분할 타입의 능동전력디커플링 회로를 위한 전압제어 방법)

  • Kim, Dong-Hee;Park, Sung-Min
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.152-153
    • /
    • 2019
  • 본 논문에서는 캐패시터-분할 타입 능동전력 디커플링 회로를 위한 전압제어 방법을 제안한다. 능동전력 디커플링 회로는 시스템에 필요한 커패시턴스를 낮추어 전해커패시터를 필름 커패시터로 대체하여 시스템 수명과 전력밀도를 높일 수 있는 장점이 있다. 그러나 일반적으로 오픈 루프 제어방식의 전압제어 방식을 사용하여 파라미터 값의 변화에 민감하다는 단점을 가지고 있다. 이에 본 논문에서는 커패시터-분할 타입 능동전력 디커플링 회로를 위한 폐루프 제어 방법을 제안한다.

  • PDF

$H_2$ controller Design of Decoupled Multivariable Feedback Control Systems ($H_2$ 제어 기법을 이용한 Decoupling 제어기 설계)

  • Choi, Goon-Ho;Cho, Yong-Suk;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.460-462
    • /
    • 1998
  • In this study, we deal with a multivariable system which its input and output are coupled. This study presents a method for designing a controller which allows a coupled system to be transformed to a decoupled system in a standard model adopting 2DOF controller. And Wiener-Hopf($H_2$) approach is used so that the designed controller can minimize given cost function.

  • PDF

A Method to Construct Control Flow Graphs for Java Programs by Decoupling Exception Flow Analysis from Normal Flow Analysis (예외 흐름 분석을 정상 흐름 분석과 분리하여 Java프로그램에 대한 제어 흐름 그래프를 생성하는 방법)

  • 조장우;창병모
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.643-650
    • /
    • 2004
  • Control flow graph is used for Performing many Program-analysis techniques, such as data-flow and control-dependence analysis, and software-engineering techniques, such as program slicing and testings. For these analyses to be safe and useful, the CFG should incorporate the exception flows that are induced by exceptions. In previous research to construct control flow graph, normal flows and exception flows are computed at the same time, since these two flows are known to be mutually dependent. By investigating realistic Java programs, we found that the cases when these two flows are mutually dependent rarely happen. So, we can decouple exception flow analysis from normal flow analysis. In this paper we propose an analysis that estimates exception flows. We also propose exception flow graph to represent exception flows. And we show that the control flow graph that accounts for exception flows can be constructed by merging exception flow graph onto normal control flow graph.

Speed Control for BLDC Motors Using a Two-Degree-of-Freedom Optimal Control Technique (2자유도 적분형 최적제어법을 이용한 BLDC 모터의 속도제어)

  • 권혁진;정석권
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.257-265
    • /
    • 2000
  • Brushless DC(BLDC) motors are widely used as AC servo motors in factory automation fields because of their quick instantaneous mobility, good energy saving efficiency and easiness of design for control system comparing with induction motors. Recently, a Two-Degree-of-Freedom(2DOF) PI control law has been adopted to some application parts to accomplish an advanced speed control of BLDC motors. The method can treat the two conflicting performances, minimum tracking errors versus reference inputs without large overshoot and rejection of some disturbances including modeling errors, independently. However, the method can not design the optimal system which is able to minimize tracking errors and energy consumption simultaneously. In this paper, a 2DOF integral type optimal servo control method is investigated to promote the speed control performances of BLDC motors considering energy consumption. In order to applicate the method to the speed servo system of the BLDC motor, the motor is modeled in the state space using the vector control and decoupling technique. To verify the validity of the suggested method, some simulations and experiments are performed.

  • PDF

Optimal Design Method of 1-Port Surge Protective Device Based on Zinc Oxide Varistor (선화아연바리스터 기반의 1-포트 서지보호장치의 최적 설계 기법)

  • Jeong, Tae-Hoon;Kim, Young-Sung;Park, Geun-Bo;Lee, Seung-IL
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.93-102
    • /
    • 2018
  • This paper reports a Surge Protective Device (SPD) that is used to protect an automatic metering interface (AMI) power supplies of communication equipment on a low-voltage distribution system from a lightning current. The surge protective device (SPD) can be classified as one-port SPDs and two-port SPDs with decoupling elements depending on the connection type. The protection of internal systems against the lightning current may require a systematic approach consisting of coordinated SPDs. To deal with this, the definition of a lightning protection zone (LPZ) was studied and interpreted through a theoretical review. Because the lightning current resulting from a lightning surge is considerably high, there is limited protection from one SPD; therefore, coordinated cascaded MOV-based SPDs are installed to solve this problem. Regarding the power grid mentioned in this paper, a class II SPD for the low-voltage distribution system installed on the border of LPZ1 and LPZ2, which establish a protection coordination with the Arrester (LA, SA) that corresponds to the LPZO installed on the MOF stage connected to one system were designed to protect various communication (control) equipment, including the automatic meter reading system inside the branch-type electric supply panel of a building, not the incoming side of one system. In addition, performance-related tests were done by a comparison with the existing method through testing, and the optimal design was achieved for the 1-port SPD that uses a series connection and can bleed load current without any decoupling element.