• 제목/요약/키워드: Decoupling Capacitor

검색결과 75건 처리시간 0.027초

Electrical Properties of BaTiO3-based 0603/0.1µF/0.3mm Ceramics Decoupling Capacitor for Embedding in the PCB of 10G RF Transceiver Module

  • Park, Hwa-sun;Na, Youngil;Choi, Ho Joon;Suh, Su-jeong;Baek, Dong-Hyun;Yoon, Jung-Rag
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1638-1643
    • /
    • 2018
  • Multi-layer ceramic capacitors as decoupling capacitor were fabricated by dielectric composition with a high dielectric constant. The fabricated decoupling capacitors were embedded in the PCB of the 10G RF transceiver module and evaluated for the characteristics of electrical noise by the level of AC input voltage. In order to further improve the electrical properties of the $BaTiO_3$ based composite, glass frit, MgO, $Y_2O_3$, $Mn_3O$, $V_2O_5$, $BaCO_3$, $SiO_2$, and $Al_2O_3$ were used as additives. The electrical properties of the composites were determined by various amounts of additives and optimum sintering temperature. As a result of the optimized composite, it was possible to obtain a density of $5.77g/cm^3$, a dielectric constant of 1994, and an insulation resistance of $2.91{\times}10^{12}{\Omega}$ at an additive content of 5wt% and a sintering temperature of $1250^{\circ}C$. After forming a $2.5{\mu}m$ green sheet using the doctor blade method, a total of 77 layers were laminated and sintered at $1180^{\circ}C$. A decoupling capacitor with a size of $0.6mm(W){\times}0.3mm(L){\times}0.3mm(T)$ (width, length and thickness, respectively) and a capacitance of 100 nF was embedded using a PCB process for the 10G RF Transceiver modules. In the range of AC input voltage 400mmV @ 500kHz to 2200mV @ 900kHz, the embedded 10G RF Transceiver modules evaluated that it has better electrical performance than the non-embedded modules.

Immunity Test for Semiconductor Integrated Circuits Considering Power Transfer Efficiency of the Bulk Current Injection Method

  • Kim, NaHyun;Nah, Wansoo;Kim, SoYoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권2호
    • /
    • pp.202-211
    • /
    • 2014
  • The bulk current injection (BCI) and direct power injection (DPI) method have been established as the standards for the electromagnetic susceptibility (EMS) test. Because the BCI test uses a probe to inject magnetically coupled electromagnetic (EM) noise, there is a significant difference between the power supplied by the radio frequency (RF) generator and that transferred to the integrated circuit (IC). Thus, the immunity estimated by the forward power cannot show the susceptibility of the IC itself. This paper derives the real injected power at the failure point of the IC using the power transfer efficiency of the BCI method. We propose and mathematically derive the power transfer efficiency based on equivalent circuit models representing the BCI test setup. The BCI test is performed on I/O buffers with and without decoupling capacitors, and their immunities are evaluated based on the traditional forward power and the real injected power proposed in this work. The real injected power shows the actual noise power level that the IC can tolerate. Using the real injected power as an indicator for the EMS test, we show that the on-chip decoupling capacitor enhances the EM noise immunity.

A Study on PV AC-Module with Active Power Decoupling and Energy Storage System

  • Won, Dong-Jo;Noh, Yong-Su;Lim, Hong-Woo;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • 제16권5호
    • /
    • pp.1894-1903
    • /
    • 2016
  • In general, electrolytic capacitors are used to reduce power pulsations on PV-panels. However, this can reduce the reliability of the PV AC-module system, because electrolytic capacitors have a shorter lifetime than PV-panels. In addition, PV-panels generate irregular power and inject it into the grid because the output power of a PV-panel depends on the surrounding conditions such as irradiation and temperature. To solve these problems, a grid-connected photovoltaic (PV) AC-module with active power decoupling and energy storage is proposed. A parallel bi-directional converter is connected to the AC module to reduce the output power pulsations of PV-panels. Thus, the electrolytic capacitor can be replaced with a film capacitor. In addition, the irregular output power due to the surrounding conditions can be regulated by using a parallel energy storage circuit. To maintain the discontinuous conduction mode at low irradiation, the frequency control method is adopted. The design method of the proposed converter and the operation principles are introduced. An experimental prototype rated at 125W was built to verify the performance of the proposed converter.

Modeling of Arbitrary Shaped Power Distribution Network for High Speed Digital Systems

  • Park, Seong-Geun;Kim, Jiseong;Yook, Jong-Gwan;Park, Han-Kyu
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2002년도 종합학술발표회 논문집 Vol.12 No.1
    • /
    • pp.324-327
    • /
    • 2002
  • For the characterization of arbitrary shaped printed circuit board, lossy transmission line grid model based on SPICE netlist and analytical plane model based on the segmentation method are proposed in this paper. Two methods are compared with an arbitrary shaped power/ground plane. Furthermore, design considerations for the complete power distribution network structure are discussed to ensure the maximum value of the PDN impedance is low enough across the desired frequency range and to guide decoupling capacitor selection.

  • PDF

Reduction of Output Voltage Ripples in Single-Phase PWM Rectifier with Active Power Decoupling Circuit

  • Nguyen, Hoang-Vu;Lee, Dong-Choon
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.419-420
    • /
    • 2015
  • In this paper, a low-cost single-phase PWM rectifier with small DC-link capacitors is proposed, where a buck-boost converter with a low power rating is added at the DC link. By controlling the auxiliary circuit so as to absorb the voltage ripple in the DC link, the second-order voltage ripple in DC-link capacitor can be reduced significantly. Therefore, a small film capacitor can be utilized to replace the bulky electrolytic capacitors. The simulation results are shown to verify the validity of the proposed method.

  • PDF

고주파용 디커플링 임베디드 캐패시터에 관한 연구 (A Study on the Embedded Capacitor for High Frequency Decoupling)

  • 홍근기;홍순관
    • 한국산학기술학회논문지
    • /
    • 제9권4호
    • /
    • pp.918-923
    • /
    • 2008
  • 본 논문에서는 전극들이 동일한 평면상에 놓이고, Gap에 의하여 유전간격을 형성한 새로운 구조의 임베디드 캐패시터(EC)를 제안하였다. 제안된 EC의 이름을 Gap type EC라고 하고, 유한요소법으로 그 특성을 평가하였다. Cap type EC의 공진주파수는 기존의 EC에 비하여 고주파 대역으로 이동되었다. 또한 공진주파수는 전극의 크기와 두께에 따라 변화되었다. Gap type EC는 Gap size가 $50{\mu}m$일 때 $55pF/cm^2$의 정전용량을 나타내었다. 이 값은 기존의 EC가 나타내는 $25pF/cm^2$에 비하여 높은 값이다. 따라서 본 논문에서 제안한 Gap type EC는 고주파 디커플링 용도로 충분히 사용될 수 있을 것이다.

디지털 노이즈와 휴대단말 안테나의 격리도 향상 방법 분석 (Analysis of Improvement Method of Isolation Between Digital Noise and the Mobile Handset Antenna Title)

  • 김준철
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.474-478
    • /
    • 2019
  • 본 논문에서는 휴대단말기 내의 디지털 노이즈와 안테나 사이의 결합(coupling)으로 인한 수신감도 저하 현상을 특성 모드(characteristic mode)를 사용해서 분석한다. 우선, 안테나와 디지털 잡음의 결합 메커니즘(mechanism)을 분석하고, 카메라 노이즈로 인한 안테나 수신감도 열화현상의 개선 방법 중 하나인 그라운드(ground) 선의 디커플링 커패시터(decoupling capacitor, decap)의 역할에 대해서도 분석한다. 분석을 위해서 카메라 모듈의 FPCB의 디지털 신호 선과 그라운드 선을 PCB 그라운드의 특성 모드를 여기(excitation) 시키는 루프(loop)형 피더(feeder)로 모델링 했고, 그라운드 선과 커패시터를 추가한 개선 모델에 대해서 분석을 했다.

11kW 5.58kW/L 무(無)전해커패시터 단상/3상 겸용 전기자동차 탑재형 충전기 (A 11 kW 5.58 kW/L Electrolytic Capacitor-less EV Charger With Single- and Three-Phase Compatibility)

  • 김형진;박준영;김선주;라마단;기에우 흐우 푹;최세완
    • 전력전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.277-284
    • /
    • 2021
  • A single and three phase-compatible single-stage EV charger without electrolytic capacitor is proposed in this study. DC battery-charging current is inherently guaranteed in the three-phase grid due to three output currents with a phase shift of 120° between each other. The proposed EV charger can provide a DC battery charging current for the single-phase grid through the integrated active power decoupling circuit without using additional switches. The proposed EV charger ensures ZVS turn-on of all switches with wide grid and battery voltage ranges. The 11 kW prototype of the proposed EV charger demonstrates a peak efficiency of 97.01% and a power density of 5.58 kW/L.

Multilayer Power Delivery Network Design for Reduction of EMI and SSN in High-Speed Microprocessor System

  • Park, Seong-Geun;Kim, Ji-Seong;Yook, Jong-Gwan;Park, Han-Kyu
    • Journal of electromagnetic engineering and science
    • /
    • 제2권2호
    • /
    • pp.68-74
    • /
    • 2002
  • In this paper, a pre-layout design approach for high-speed microprocessor is proposed. For multilayer PCB stark up configuration as well as selection and placement of decoupling capacitors, an effective solution for reducing SSN and EMI is obtained by modeling and simulation of complete power distribution system. The system model includes VRM, decoupling capacitors, multiple power and ground planes for core voltage, vias, as well as microprocessor. Finally, the simulation results are verified by measurements data.