• Title/Summary/Keyword: Decoupled

Search Result 460, Processing Time 0.031 seconds

Nonexistence and non-decoupling of the dissipative potential for geo-materials

  • Liu, Yuanxue;Zhang, Yu;Wu, Runze;Zhou, Jiawu;Zheng, Yingren
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.569-583
    • /
    • 2015
  • Two fundamental issues exist in the damage theory of geo-material based on the concept of thermodynamics: existence or nonexistence of the dissipation potential, and whether the dissipation potential could be decoupled into a damage potential and a plastic one or not. Thermodynamics theory of elastoplastic damage assumes the existence of dissipation potential, but the presence of dissipation potential is conditional. Based on the dissipation inequality in accord with the second law of thermodynamics, the sufficient and necessary conditions are given for the existence of the dissipation potential separately in total and incremental forms firstly, and proved strictly in theory. With taking advantage of the basic mechanical properties of geo-materials, the nonexistence of the dissipative potential is verified. The sufficient and necessary conditions are also given and proved for the decoupling of the dissipation potential of geo-materials in total and incremental forms. Similarly, the non-decoupling of the dissipation potential has also been proved, which indicates the dissipation potential of geo-materials in total or incremental forms could not be decoupled into a dissipative potential for plasticity and that for damage respectively. The research results for the fundamental issues in the thermodynamics theory of damage will help establish and improve the theoretic basis of elastoplastic damage constitutive model for geo-materials.

Vorticity Based Analysis of the Viscous Flow around an Impulsively Started Cylinder (와도를 기저로 한 초기 순간 출발하는 실린더 주위의 점성유동해석)

  • Kwang-Soo Kim;Jung-Chun Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.1-10
    • /
    • 1998
  • This paper presents a vorticity-based numerical method for analyzing an incompressible Newtonian viscous flow around an impulsively started cylinder. The Navier-Stockes equations have a natural Helmholtz decomposition. The vorticity transport equation and the pressure equation are derived from this decoupled form. The associated boundary conditions are dynamic for the vorticity and pressure variables representing the coupling relation between them and the force balance on the wall. The various numerical treatments for solving the governing equations are introduced. According to Wu et al.(1994), the boundary conditions are decoupled, keeping the dynamic relation between vorticity and pressure. The vorticity transport equation is formulated by FVM and TVD(Total Variation Diminishing) scheme is used for the convection term. An integral approach similar to the panel method is used to obtain the velocity field for a given vorticity field and the pressure field, instead of the conventional differential approaches. In the numerical process, the structured grid is generated. The results are compared to existing numerical and analytic results for the validity of the present method.

  • PDF

Experimental and Numerical Approach foy Optimization of Tunnel Blast Design (터널 발파설계 최적화를 위한 실험 및 수치해석적 접근)

  • 이인모;김상균;권지웅;박봉기
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.75-85
    • /
    • 2003
  • Laboratory model blast and in-situ rock blast tests were conducted to determine blast-induced stress wave propagation characteristics under different explosive types, different loading conditions and different mediums. Dynamic numerical approaches were conducted under the same conditions as experimental tests. Stress magnitudes at mid-point between two blast holes which were detonated simultaneously increased up to two times those of single hole detonation. The rise time of maximum stress in a decoupled charge condition was delayed two times that of a fully charged condition. Dynamic numerical analysis showed almost similar results to blast test results, which verifies the effectiveness of numerical approaches fur optimizing the tunnel blast design. Dynamic numerical analysis was executed to evaluate rock behavior and damage of the contour hole, the sloping hole adjacent to the contour hole in the road tunnel blasting pattern. The rock damage zone of the sloping hole from the numerical analysis was larger than that of the contour hole. Damage in the sloping hole can be reduced by using lower density explosive, by applying decoupled charge, or by increasing distance between the sloping hole and the contour hole.

A Sliding Mode Control Scheme for Inverted Pendulum System (슬라이딩 모드 제어기법을 이용한 도립진자 시스템 제어)

  • Han, Sang-Wan;Park, Minho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1020-1026
    • /
    • 2014
  • A problem of sliding mode control is chattering because of controle input signal included unknown disturbance and nonlinear input parameters. This paper presents a sliding mode controller design to inverted pendulum system. In this paper, a sliding mode control algorithm to reduce a chattering is proposed. The reduction of chattering is accomplished by smoothing function for nonlinear control input. In this method, the dynamic equations of the inverted pendulum is decoupled by considering nonlinear parameters and external disturbances. Therefore, this study is applied to obtain switching control inputs for sliding mode controller. The proposed technique is tested to the control of inverted pendulum through computer simulations. The result shown reduced chattering in control input.

A Study on the Ground Vibration Reduction Characteristics of Air-Deck Blasting Method Using Paraffin Waxed Paper Tube (파라핀 지관 구조체를 활용한 Air-Deck 발파공법의 지반진동 저감특성에 관한 연구)

  • Gyeong-Jo, Min;Young-Keun, Kim;Chan-Hwi, Shin;Sang-Ho, Cho
    • Explosives and Blasting
    • /
    • v.41 no.1
    • /
    • pp.32-45
    • /
    • 2023
  • Environmental regulations in Korea for blasting at industrial sites have conservative standards, which often result in reduced efficiency and cost-effectiveness due to the consideration of environmental regulations and public complaints. Therefore, there is a need for blasting methods that can reduce environmental damage while improving construction efficiency and cost-effectiveness. In this study, we analyzed the effects of the PA-Deck (Paraffin Air-Deck) blasting method, which is a kind of Air Decoupled Charge method in principle utilizing a paraffin-infused paper tube as an air gap, on reducing blasting hazards and improving blasting efficiency. The analysis also evaluated the effectiveness of newly applied equipment for collecting blasting vibration data, and derived the relationship between the explosion velocity and vibration velocity of explosives, and performed frequency analysis of the vertical component. The results of the blasting vibration velocity analysis showed that the Paraffin Waxed Paper Tube-based blasting method exhibited significantly lower vibration velocities compared to conventional blasting methods, and it was judged that more uniformly small-sized fragmented rocks were generated.

The Method of precise landing operation for UAV's recharging system by using QR code (UAV의 근거리 무선충전을 위한 QR 코드를 활용한 정밀한 착륙 방안)

  • Kim, Byoung-Kug;Hong, Sung-Hwa;Kang, Jiheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.519-521
    • /
    • 2022
  • As appearance of diverse electric power supplies and fuel cells have been emerging, UAVs have capacity to prolong their flight missions. Nowadays, the rotary based UAVs that are commonly distributed on the open market, adapt rechargeable batteries and have around 50 centimeters in width and generally within 30 minutes in hovering flight capacities. UAV's flight time highly depends on the capacity and the weight of its batteries. To cope with the flight time, recharging methods are also being researched. their researches are mainly divided into coupled and decoupled in manner. In this article, we propose the method to refine the position more effectivly and precisely adapting QR Code and 3-D position estimation so that UAVs enable to land on the recharging system successfully.

  • PDF

Development of $^1H-^{31}P$ Animal RF Coil for pH Measurement Using a Clinical MR Scanner (임상용 MR에서 pH 측정을 위한 동물 실험용 $^1H-^{31}P$ RF 코일 개발)

  • Kim, Eun Ju;Kim, Daehong;Lee, Sangwoo;Heo, Dan;Lee, Young Han;Suh, Jin-Suck
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.1
    • /
    • pp.52-58
    • /
    • 2014
  • Purpose : To establish a pH measurement system for a mouse tumor study using a clinical scanner, to develop the $^1H$ and 31P radio frequency (RF) coil system and to test pH accuracy with phantoms. Materials and Methods: The $^1H$ and the $^{31}P$ surface coils were designed to acquire signals from mouse tumors. Two coils were positioned orthogonally for geometric decoupling. The pH values of various pH phantoms were calculated using the $^1H$ decoupled $^{31}P$ MR spectrum with the Henderson-Hasselbalch equation. The calculated pH value was compared to that of a pH meter. Results: The mutual coil coupling was shown in a standard $S_{12}$. Coil coupling ($S_{12}$) were -73.0 and -62.3 dB respectively. The signal-to-noise ratio (SNR) obtained from the homogeneous phantom $^1H$ image was greater than 300. The high resolution in vivo mice images were acquired using a $^{31}P$-decoupled $^1H$ coil. The pH values calculated from the $^1H$-decoupled $^{31}P$ spectrum correlated well with the values measured by pH meter ($R^2$=0.97). Conclusion: Accurate pH values can be acquired using a $^1H$-decoupled $^{31}P$ RF coil with a clinical scanner. This two-surface coil system could be applied to other nuclear MRS or MRI.

Magnetic Properties of (Co-Cr)-P-Ni Alloy Thin Film ((Co-Cr)-P-Ni 합금 박막의 자기적 특성)

  • 박창민;신경호;손홍균;이택동
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.2
    • /
    • pp.134-139
    • /
    • 1995
  • We produced $(Co_{93}Cr_{7})-P-Ni$ thin films for longitudinal magnetic recording media using OC magnetron sputtering system The variation of magnetic properties of $(Co_{93}Cr_{7})-P-Ni$ pseudo-ternary system with the composition was examined. We obtained the coercivity up to 1500 Oe. The coercivity iocrease could be ascribed to in-plane anisotropy enhaocement, grain size decrease, magnetic decoupling between particles. TEM micrographs showed that the grains were well-decoupled by the addition of phosphorous.

  • PDF

Numerical Modeling of One-Dimensional Longitudinal Dispersion Equation using Eulerian Method

  • Seo, Il-Won;Kim, Dae-Geun
    • Korean Journal of Hydrosciences
    • /
    • v.6
    • /
    • pp.51-66
    • /
    • 1995
  • Various Eulerian-Lagerangian numerical models for the one-dimensional longtudinal dispersion equation are studied comparatively. In the models studied, the transport equation is decoupled into two component parts by the operator-splitting approach ; one part governing advection and the other dispersion. The advection equation has been solved using the method of characteristics following flud particles along the characteristic line and the result are interpolated onto an Eulerian grid on which the dispersion equation is solved by Crank-Nicholson type finite difference method. In solving the advection equation, various interpolation schemes are tested. Among those, Hermite interpo;ation po;ynomials are superor to Lagrange interpolation polynomials in reducing both dissipation and dispersion errors.

  • PDF

Certificate-Based Signcryption Scheme without Pairing: Directly Verifying Signcrypted Messages Using a Public Key

  • Le, Minh-Ha;Hwang, Seong Oun
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.724-734
    • /
    • 2016
  • To achieve confidentiality, integrity, authentication, and non-repudiation simultaneously, the concept of signcryption was introduced by combining encryption and a signature in a single scheme. Certificate-based encryption schemes are designed to resolve the key escrow problem of identity-based encryption, as well as to simplify the certificate management problem in traditional public key cryptosystems. In this paper, we propose a new certificate-based signcryption scheme that has been proved to be secure against adaptive chosen ciphertext attacks and existentially unforgeable against chosen-message attacks in the random oracle model. Our scheme is not based on pairing and thus is efficient and practical. Furthermore, it allows a signcrypted message to be immediately verified by the public key of the sender. This means that verification and decryption of the signcrypted message are decoupled. To the best of our knowledge, this is the first signcryption scheme without pairing to have this feature.