• Title/Summary/Keyword: Decorrelation

Search Result 75, Processing Time 0.021 seconds

Effect of Tropospheric Delay Irregularity in Network RTK Environment (기준국 간 대류권 지연 변칙이 네트워크 RTK에 미치는 영향)

  • Han, Younghoon;Ko, Jaeyoung;Shin, Mi-Young;Cho, Deuk-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2569-2575
    • /
    • 2015
  • Network RTK generally uses a linear interpolation method by using the corrections from reference stations. This minimizes the spatial decorrelation error caused by the increase of distance between the reference station's baseline and user's baseline. However, tropospheric delay, a function of the meteorological data can cause a spatial decorrelation characteristic among reference stations within a network by local meteorological difference. A non-linear characteristic of tropospheric delay can deteriorate Network RTK performance. In this paper, the modeling of tropospheric delay irregularity is made from the data when the typhoon is occurred. By using this modeling, analyzing the effect of meteorological difference between reference stations on correction is performed. Finally, we analyze an effect of non-linear characteristics of tropospheric delay among reference stations to Network RTK user.

Reflectance of Geological Media by Using a Field spectrometer in the Ungsang Area, Kyungsang Basin

  • Kang, Kyung-Kuk;Song, Kyo-Young;Ahn, Chung-Hyun;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.2
    • /
    • pp.165-181
    • /
    • 2001
  • Using a field spectrometer having a spectral range of 0.4$\mu\textrm{m}$~2.5$\mu\textrm{m}$ with a spectral resolution of 1nm, the researchers measured the reflectance of granite, andesitic rocks, sedimentary rocks, and pyrophyllite ore in the Ungsang area, Kyungsang Basin, South Korea. Spectral characteristics of the geological media were investigated from the analysis. The in-situ measured sites were selected in well exposed rock outcrops. In case of unfavorable weather conditions, rocks were sampled and remeasured under natural solar condition. The reflectance of field data was measurd at three sistes for granite, six sites for andesitic rock three sites for sedimentary rocks, and two sites for pyrophyllite ore. The vibrational absorption bands for pyrophyllite are detected in the spectral range of 2.0$\mu\textrm{m}$~2.5$\mu\textrm{m}$. The absorption band for granites in study area is not distinctive. The reflectance measured under normal field conditions showed strong absorption at wavelengths of 1.4$\mu\textrm{m}$ and 1.9$\mu\textrm{m}$ due to the effect of moisture in the atmosphere. After the bands of 1.4$\mu\textrm{m}$ and 1.9$\mu\textrm{m}$ were removed, Hull Quotient method was applied to characterize absorption bands. The reflectances of field data were calculated to estimate the band ratio corresponding to the Landsat TM and EOS Terra ASTER. The researchers suggest here that the TM band2, band3, band4, and band7 or ASTER band2, band3, band4, and band9 are the best combination for discriminating outcrops. The researchers tested and demonstrated using a Landsat TM image in the study area. For geologic applications, decorrelation stretch is also an effective tool to enhance the exposed rock mass in images.

Sensitivity of Data Assimilation Configuration in WAVEWATCH III applying Ensemble Optimal Interpolation

  • Hye Min Lim;Kyeong Ok Kim;Hanna Kim;Sang Myeong Oh;Young Ho Kim
    • Journal of the Korean earth science society
    • /
    • v.45 no.4
    • /
    • pp.349-362
    • /
    • 2024
  • We aimed to evaluate the effectiveness of ensemble optimal interpolation (EnOI) in improving the analysis of significant wave height (SWH) within wave models using satellite-derived SWH data. Satellite observations revealed higher SWH in mid-latitude regions (30° to 60° in both hemispheres) due to stronger winds, whereas equatorial and coastal areas exhibited lower wave heights, attributed to calmer winds and land interactions. Root mean square error (RMSE) analysis of the control experiment without data assimilation revealed significant discrepancies in high-latitude areas, underscoring the need for enhanced analysis techniques. Data assimilation experiments demonstrated substantial RMSE reductions, particularly in high-latitude regions, underscoring the effectiveness of the technique in enhancing the quality of analysis fields. Sensitivity experiments with varying ensemble sizes showed modest global improvements in analysis fields with larger ensembles. Sensitivity experiments based on different decorrelation length scales demonstrated significant RMSE improvements at larger scales, particularly in the Southern Ocean and Northwest Pacific. However, some areas exhibited slight RMSE increases, suggesting the need for region-specific tuning of assimilation parameters. Reducing the observation error covariance improved analysis quality in certain regions, including the equator, but generally degraded it in others. Rescaling background error covariance (BEC) resulted in overall improvements in analysis fields, though sensitivity to regional variability persisted. These findings underscore the importance of data assimilation, parameter tuning, and BEC rescaling in enhancing the quality and reliability of wave analysis fields, emphasizing the necessity of region-specific adjustments to optimize assimilation performance. These insights are valuable for understanding ocean dynamics, improving navigation, and supporting coastal management practices.

On-Line Blind Channel Normalization for Noise-Robust Speech Recognition

  • Jung, Ho-Young
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.143-151
    • /
    • 2012
  • A new data-driven method for the design of a blind modulation frequency filter that suppresses the slow-varying noise components is proposed. The proposed method is based on the temporal local decorrelation of the feature vector sequence, and is done on an utterance-by-utterance basis. Although the conventional modulation frequency filtering approaches the same form regardless of the task and environment conditions, the proposed method can provide an adaptive modulation frequency filter that outperforms conventional methods for each utterance. In addition, the method ultimately performs channel normalization in a feature domain with applications to log-spectral parameters. The performance was evaluated by speaker-independent isolated-word recognition experiments under additive noise environments. The proposed method achieved outstanding improvement for speech recognition in environments with significant noise and was also effective in a range of feature representations.

  • PDF

THE IMPROVEMENT OF POSITION ACCURACY USING INVERTED DGPS (NVERTED DGPS를 이용한 위치 정밀도 향상)

  • 이상혁;최규홍;박종욱;박필호
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.63-70
    • /
    • 2001
  • IDGPS(Inverted Differential Global Positioning System) is one of technique improving the accuracy of GPS positioning and is mostly used for tracking an automatic vehicle. In the IDGPS, the user send it’s GPS position and related satellite information to dispatcher, and the corrections are made at the dispatcher to get corrected user position. IDGPS suffered correction degradation as the baseline become large. This problem is resolved using NIDGPS(Network IDGPS). As the experimental results are demonstrated, the improvement of position accuracy using IDGPS and NIDGPS is verified.

  • PDF

MIMO Channel Capacity and Configuration Selection for Switched Parasitic Antennas

  • Pal, Paramvir Kaur;Sherratt, Robert Simon
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.197-206
    • /
    • 2018
  • Multiple-input multiple-output (MIMO) systems offer significant enhancements in terms of their data rate and channel capacity compared to traditional systems. However, correlation degrades the system performance and imposes practical limits on the number of antennas that can be incorporated into portable wireless devices. The use of switched parasitic antennas (SPAs) is a possible solution, especially where it is difficult to obtain sufficient signal decorrelation by conventional means. The covariance matrix represents the correlation present in the propagation channel, and has significant impact on the MIMO channel capacity. The results of this work demonstrate a significant improvement in the MIMO channel capacity by using SPA with the knowledge of the covariance matrix for all pattern configurations. By employing the "water-pouring algorithm" to modify the covariance matrix, the channel capacity is significantly improved compared to traditional systems, which spread transmit power uniformly across all the antennas. A condition number is also proposed as a selection metric to select the optimal pattern configuration for MIMO-SPAs.

Karhunen - Loeve Transform -Classified Vector Quantization for Efficient Image Coding (Karhunen-loeve 변환과 분류 벡터 양자화에 의한 효율적인 영상 부호화)

  • 김태용;최흥문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.44-52
    • /
    • 1996
  • This paper proposes a KLT-CVQ scheme using PCNN to improbe the quality of the reconstructed images at a given bit rate. By using the PCNN and classified vector quantization, we exploit the high energy compaction and compelte decorrelation capbilities of the KLT, and the pdf (probability density function) shape and space-filling advantages of the vQ to improve the performance of the proposed hybrid coding technique. In order to preserve the preceptual fetures such as the edge components in the reconstructed images, we classified the input image blocks according to the texture energy measures of the local statistics and vector-coded them adaptively, and thereby reduces the possible edge degradation in the reconstructed images. The results of the computer simulations show that the performance of the proposed KLT-CVQ is higher than that of the KLT-CSQ or the DCT-CVQ in the quality of the reconstructed images at a given bit rate.

  • PDF

SUBSIDENCE AT DUK-PO AREA REVEALED BY DINSAR AND INTERFEROGRAM STACKING

  • Hong, Sang-Hoon;Kim, Sang-Wan;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.308-311
    • /
    • 2002
  • Radar interferometric phase is sensitive to both ground topography and coherent surface displacement. The basic tactics of differential interferometric synthetic aperture radar (DInSAR) technique are to separate the two effects. Applications of DInSAR to Duk-Po area in Busan were studied. In the study area, an abrupt subsidence, possibly caused by sub-way construction, was observed by JERS-1 SAR interferometry. Differential interferograms were generated using twenty-three JERS-1 SAR data acquired between April 24, 1992, and August 7, 1998. Because the area is relatively flat with little topographic relief the topographic effects were not removed. A phase filtering and interferogram techniques were applied to increase fringe clarity as well as to decrease decorrelation error. The stacking improves the quality of interferograms especially when the displacement is discontinuous. The interferograms clearly show the evidence of subsidence along Duk-Po subway railroad. These results demonstrate that the interferogram stacking technique can improve the detectability of radar interferometry to an abrupt displacement and DInSAR is useful to geological engineering applications.

  • PDF

A study on speckle size and measurable limitations in laser speckle interferometry method (레이저 스페클간섭법에 있어서 스페클크기와 측정 한계에 관한 연구)

  • 윤성운
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 1996
  • The high coherence of laser beam has made it possible to observe interference effects even in the light scattered from rough surfaces. That's why, when object with a scattering surface is illuminated with laser light, we do see a speckled appearance due to random interference. This sort of unique property of laser speckle has bruht into existence the new noncontaciting techniques such as speckle metrology method of measuring deformation, displacement, and vibration etc of objects with high optical sensitivity. The measurable range of speckle metrology especially used to measure in -plane information, however, is limited by some factors, the so-called strain, rotation tilt of surface and out of displacement perpendicular to the plane of analysis This restrictions severly limits the measurable range of speckle metrology by causing the decorrelation of speckle patterns. It is the purpose of this paper to give a survey on the measurable limitation of speckle photography method that is one of speckle metrology. Namely we will discuss the mutual relationships and problems of each limitations adding the restriction on the largest and smallest displacement measurable with speckle methods.

  • PDF

Fault Detection and Diagnosis of Dynamic Systems with Colored Measurement Noise (유색측정잡음을 갖는 동적 시스템의 고장검출 및 진단)

  • Kim, Bong-Seok;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.6 no.1 s.10
    • /
    • pp.102-110
    • /
    • 2002
  • An effective scheme to detect and diagnose multiple failures in a dynamic system is described for the case where the measurement noise is correlated sequentially in time. It is based on the modified interacting multiple model (MIMM) estimation algorithm in which a generalized decorrelation process is developed by employing the autoregressive (AR) model for the colored noise and applying measurement difference method.

  • PDF