• Title/Summary/Keyword: Decomposition of Hydrogen Peroxide Experiment

Search Result 15, Processing Time 0.024 seconds

Self-Decomposition Characteristic of Concentrated Hydrogen Peroxide with Temperature and Stabilizer (저장 온도와 안정제 양에 따른 고농도 과산화수소의 자연 분해 특성)

  • Chung, Seung-Mi;An, Sung-Yong;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.16-21
    • /
    • 2009
  • This paper introduces the methods of hydrogen peroxide storage test and storability of concentrated hydrogen peroxide is estimated. Using the method of simple concentration measuring, storability was evaluated. Experiment variables were the amount of stabilizer in hydrogen peroxide, storage temperature, and caps of vessels. The experiments were performed during 8 months to 24 months. High purity hydrogen peroxide had much better storability than hydrogen peroxide with much stabilizer. In addition, the case using paraffin film which did not react with hydrogen peroxide for covering showed better storability. The temperature is very important variable in hydrogen peroxide storage. So, when hydrogen peroxide was under $10^{\circ}C$ storability of hydrogen peroxide is much improved.

Feasibility of Energy Generation from Chemical Reaction between Hydrogen Peroxide/Hydride (고농도 과산화수소와 수소화물의 지속적인 반응에 대한 연구)

  • SEO, SEONGHYEON
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.3
    • /
    • pp.271-277
    • /
    • 2015
  • The present paper discusses about noble idea on various reactions including hydrides, hydrogen peroxide and nano-sized metal powders, which do not emit toxic materials as well as carbon dioxide. Here in this paper, the very first-ever concept that heat energy can be generated from the direct reaction between sodium borohydride and hydrogen peroxide is presented. Sodium hydride as fuel can supply hydrogen reacting with oxygen provided by the decomposition of hydrogen peroxide solution. Solid sodium borohydride can be resolved in water and treated as liquid solution for the easy handling and the practical usage although its solid powder can be directly mixed with hydrogen peroxide for the higher reactivity. The thermodynamic analysis was conducted to estimate adiabatic reaction temperatures from these materials. The preliminary experiment on the reactions conducted using sodium borohydride powder and hydrogen peroxide water solution revealed that the self-propagating reaction can occur and that its reactivity increases with an increase of hydrogen peroxide concentration.

Performance Evaluation of a Micro Thruster Utilizing Hydrogen Peroxide Decomposition (과산화수소 분해반응을 이용한 초소형 추력기 성능평가)

  • Lee, Jeong-Sub;An, Sung-Yong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.102-105
    • /
    • 2007
  • The performance evaluation of the micro thruster utilizing hydrogen peroxide decomposition is described. The catalyst bed was made of porous ceramic material($Isolite^{(R)}$) with large surface to mass ratio. 14%wt platinum was loaded on the catalyst support as a catalyst. Hydrogen peroxide with 85% concentration was used as a monopropellant. The length of the catalyst bed and the feed pressure of the hydrogen peroxide were taken as the parameters for the experiment. All experiments were carried out under cold start condition for 30 seconds. The $c^*$ efficiency was evaluated for each test case using measured pressure data. For the catalyst support length of 30 mm and feed pressure at 5.51 bar, satisfactory $c^*$ efficiency beyond 95% was observed.

  • PDF

Vacuum Distillation of Rocket Grade Hydrogen Peroxide with Temperature (온도 조건에 따른 추진제급 과산화수소의 진공 증류)

  • Chung, Seung-Mi;An, Sung-Yong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.89-92
    • /
    • 2009
  • Because many research using concentrated hydrogen peroxide as propellant is studied, research for distillation method for domestic production of rocket grade hydrogen peroxide is needed. To distill hydrogen peroxide, vacuum distillation will be used because of heat decomposition of hydrogen peroxide. Distillation pressure is 30 torr which is determined by Raoult's law to distill under $40^{\circ}C$. Variable of distillation experiment is distillation temperature. And the comparison of distillation results was done by yield and operation time. In the result, generally, yield was lower and the water in receiver had higher concentration with shorter distillation time. And with similar time, when distillation temperature was higher, yield was lower and hydrogen peroxide became higher concentration.

  • PDF

Images of Decomposition of Hydrogen Peroxide Demonstration Represented in New Media Contents: Focusing on Simulacra and Simulation (뉴미디어 콘텐츠에서 재현되는 과산화수소 분해 실험의 이미지 -시뮬라크르와 시뮬라시옹을 중심으로-)

  • Shin, Sein;Ha, Minsu;Lee, Jun-Ki
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.1
    • /
    • pp.13-28
    • /
    • 2020
  • This study attempted to understand the characteristics of images of scientific experiments represented and consumed on YouTube, a representative of today's new media. In particular, this paper analyzes the case studies of YouTube's hydrogen peroxide decomposition experiment based on Baudrillard's theory of Simulation and Simulacra, which discusses the strong status of images and the ambiguity of the boundary between virtual and reality. A total of 14 YouTube videos related to hydrogen peroxide decomposition experiments were analyzed. In those videos, hydrogen peroxide decomposition experiments were typically conducted with several signs representing scientific experiments, but the most important sign in the videos were bubbles produced through experiments. For more public consumption of the content, the bubbles resulted from hydrogen peroxide decomposition reproduced in YouTube have been transformed into a more spectacular image as 'super-huge' and 'explosive' bubble. Considering the influence of new media that can be accessed by students anytime and anywhere, it is positive that science experiments in new media enhance students' intimacy and access to science. At the same time, however, it is also important to note the danger that the purpose of scientific experiments will be limited to only 'showing specular images', due to the nature of new media, which mainly deals with immediate and superficial images. Furthermore, this study argues that improving students' science media literacy is required to critically examine the science-related images represented in the new media based on understanding the characteristics and limitations of new media that deeply affect daily life.

Performance Evaluation of Hydrogen Peroxide Vaporizer with $K_2MnO_4/Al_2O_3$ Catalyst ($K_2MnO_4/Al_2O_3$촉매를 이용한 과산화수소 기화기의 성능평가)

  • Rang Seong-Min;An Sung-Yong;Kwon Hyuck-Mo;Kwon Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.329-334
    • /
    • 2005
  • The rocket grade hydrogen peroxide has been widely used as a monopropellant in propulsion systems. Conventional decomposition of hydrogen peroxide, however, requires preheating before feeding into the reactor. In the present paper, we described an experimental study of a catalytic reactor bed that employs multiple catalysts to enhance the low temperature response in the vicinity of the reactor inlet. $K_2MnO_4$ is experimentally chose as the inlet catalyst from the candidates of silver, platinum, $La_{0.8}Sr_{0.2}CoO_3(LSC),\;and\;K_2MnO_4$. We developed new synthesis and coating method using modified alumina sol-gel method to strengthen the adhesion of $K_2MnO_4$ catalyst. from the vaporizer experiment with hydrogen peroxide at room temperature, satisfactory vaporizing performance was measured.

  • PDF

Basic Study for Distillation of Rocket Grade Hydrogen Peroxide (추진제 급 과산화수소 증류를 위한 기초 연구)

  • Chung, Seung-Mi;An, Sung-Yong;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.67-70
    • /
    • 2009
  • Because many research using rocket grade peroxide is studied, distillation method for domestic production of rocket grade hydrogen peroxide is required. Distillation methods are very various and divided by feeding method, distillation time, distillation pressure, and so on. Among these, vacuum distillation is a suitable method for hydrogen peroxide. This method can reduce thermal decomposition and reaction with impurities. Distillation condition is determined by Raoult's law. Low vacuum level and vacuum level control are appeared as important problems of the experiment equipment, which are solved by using less leakage vacuum chamber and metering valve.

  • PDF

The Optimum Levels of Alkaline Hydrogen Peroxide Treatment of Rice Straw for Feed (볏짚 사료가치 증진을 위한 알카리성 과산화수소의 적정 처리수준)

  • Choi, Yoon-Hee;Kim, Myeong-Sook;Hong, Jai-Sik
    • Applied Biological Chemistry
    • /
    • v.37 no.5
    • /
    • pp.320-325
    • /
    • 1994
  • These studies were conducted to investigate the chemical composition changes in in vitro digestibility for the improvement of nutritive value of rice straw by alkaline hydrogen peroxide. The content of neutral detergent fiber (NDF), acid detergent fiber (ADF), hemicellulose, cellulose and lignin in rice straw was decreased with higher level of $H_2O_2\;(pH 11.5)$. The content of ADF, cellulose and ash of the rice straw washed after $H_2O_2\;(pH 11.5)$ treatment tended to be increased but NDF, hemicellulose and lignin were decreased with higher concentration of $H_2O_2\;(pH 11.5)$. In the rice straw washed after alkaline hydrogen peroxide treatment the decomposition of cellulose and lignin was effective in $pH\;11.5{\sim}12.5$, in smaller cutting size and $55^{\circ}C$. The in vitro organic matter digestibility was increased with higher $H_2O_2$ concentration and smaller cutting size of rice straw.

  • PDF

A Micro Cell Counter Integrated with Oxygen Micropump

  • Son, Sang-Uk;Choi, Yo-Han;Lee, Seung-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2441-2444
    • /
    • 2003
  • This paper describes fabrication of a micro cell counter integrated with an oxygen micropump and Sephadex G-25 beads counting experiment. The device utilized a phototransistor, microwindow, and light source of microscope for beads detection. Microheater and microchannel were used for pumping and guiding of beads to the microwindow. Counting capability of the device was tested with a peristaltic pump and the measured signals (${\sim}10\;mV$) with oscilloscope showed peak shape when beads passed the microwindow. Pumping of beads by the oxygen micropump was carried out by heating paraffin, which enveloped manganese dioxide (catalyst), to trigger the decomposition of hydrogen peroxide into water and oxygen. It lasted for 5 min with $7\;{\mu}l$ of wt. 30 % hydrogen peroxide. Beads counting by oxygen micropump showed peaks ($2{\sim}20\;mV$) with $30\;{\mu}l$ of beads sample and the number of peaks by magnitude was acquired.

  • PDF

Analysis of Experiments for the Rules of Material Change Unit in 9th Grade Science Textbooks and the Development of Experiments Applying Small-Scale Chemistry (9학년 과학교과서 물질변화에서의 규칙성 단원 실험 분석과 Small-Scale Chemistry를 적용한 실험 개발)

  • Ryu, Ran-Yeong;Kim, Dong-Jin;Hwang, Hyun-Sook;Park, Se-Yeol;Lee, Sang-Kwon;Park, Kuk-Tae
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.529-540
    • /
    • 2011
  • The purpose of this study was to analyze experiments for the rules of material change unit in 9th grade science textbooks and develop experiments applying small-scale chemistry (SSC). For this study, experimental methods for the precipitation experiment, water electrolysis experiment, decomposition of hydrogen peroxide experiment presented in the 9 science textbooks were analyzed. Problems and improvements that were needed were extracted by 13 science teachers performing the experiments. Experiments applying SSC were developed based on the improvements needed. Afterwards, 19 pre-service science teachers performed both the developed SSC experiments and the science textbooks' experiments. A questionnaire about merits and demerits of the experiments applying SSC was performed. According to the results of this study, most of the 9th grade science textbooks included the lead iodide precipitation experiment, water electrolysis experiment by Hoffman voltameter, and decomposition of hydrogen peroxide experiment using catalytic manganese dioxide. Improvements were needed on the quantity of reagents, time for performing experiments, and scale of experimental apparatus. Merits of the developed experiments applying SSC which used small amount of reagents were safety, easy waste material disposal, short reaction time, and reproducible experimental results. Demerits of the experiments applying SSC were difficulty in observing, decreased achievement, and lack of skill in handling small-scale apparatus. Therefore, if the experiments developed applying SSC were to be utilized in 9th grade science experiments, it will be possible to use less reagent and be able to teach and carry out reproducible experiments at the same time. Also, the reproducible experiments based on SSC will help students under stand the scientific concepts for the rules of material change unit.