• 제목/요약/키워드: Decomposition Mechanism

검색결과 284건 처리시간 0.023초

아르곤/이산화탄소 혼합가스의 유도 결합 플라즈마를 이용한 이산화탄소 분해 연구 (Study on CO2 Decomposition using Ar/CO2 Inductively Coupled Plasma)

  • 김경현;김관용;이효창;정진욱
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제1권1호
    • /
    • pp.135-140
    • /
    • 2015
  • 유도 결합 플라즈마를 활용하여 $Ar/CO_2$ 혼합가스에서 이산화탄소를 분해하는 연구이다. 고밀도 플라즈마를 발생시키기 위해 Ar 가스를 첨가하였고 이산화탄소 분해율을 측정하기 위해 광학적 광량 측정법을 사용 하였다. 유도 결합 플라즈마를 방전시키고 인가 전력, 압력, 혼합가스 비율을 변경하가며 단일 랭뮤어 프로브를 이용해 플라즈마 변수를 얻고 방출 분광기로 얻은 빛의 스펙트럼을 이용하여 분해율을 측정하였다. 측정된 플라즈마 변수로부터 $CO_2$ 유도 결합 플라즈마의 소스 특성을 확인했고 $CO_2$ 분해 메커니즘은 플라즈마 변수에 직접적인 영향을 받기 때문에 그 상관관계를 분석하였다.

주형에서 석탄분 첨가제(시콜)에 의한 주철주물의 소착억제기구에 관하여 (The Mechanism of Inhibiting Burn-on Sand to Iron Castings by Coal-dust (Seacoal) for a Molding Sand Additive.)

  • 홍영명;이영상;김동옥
    • 한국주조공학회지
    • /
    • 제3권2호
    • /
    • pp.100-105
    • /
    • 1983
  • The mechanism of coal-dust action on inhibiting burn-on of Sand to iron castings was taken in consideration by means of casting test and thermal decomposition test. To compare the ability of inhibiting sand burn-on, test castings were produced in green sand moulds added three different coal-rusts. And quantitative determination of lustrous carbon and volatiles production for coal-dust samples were performed.The lustrous carbon production was in good agreement with the casting test result. But total voltiles production was relatively inefficient on hibiting sand burn-on to test castings.The lustrous carbon theory can be given to explain the mechanism which coal-dust inhibits sand burn-on to iron castings.

  • PDF

수분오염에 따른 그리스 내 증주제 분해 연구 (Decomposition of Thickener in Grease by Water Contamination)

  • 임영관;함송이;이정민;정충섭
    • Tribology and Lubricants
    • /
    • 제28권1호
    • /
    • pp.33-37
    • /
    • 2012
  • Automotive wheel bearing grease helps to reduce stresses and prevent wear of wheel bearings. But it is easily contaminated by water and other contaminants. Previously, our research group reported the change of grease physical properties such as dropping point, work penetration and oxidation work stability, water washout characteristics, leakage tendency, oil separation, evaporation loss and rust protection by water contamination. In this paper, we analyzed the physical characteristics of grease such as lubricity, viscosity and total acid number to investigate the mechanism of thickener decomposition. In water contaminated grease, the total acid number and wear scar were increased, the viscosity was decreased due to the decomposition of lithium complex thickener.

고온 불활성 기체 분위기에서 아산화질소 열분해 및 반응속도에 관한 연구 (A Study of Nitrous Oxide Thermal Decomposition and Reaction Rate in High Temperature Inert Gas)

  • 이한민;윤재근;홍정구
    • 한국분무공학회지
    • /
    • 제25권3호
    • /
    • pp.132-138
    • /
    • 2020
  • N2O is hazardous atmosphere pollution matter which can damage the ozone layer and cause green house effect. There are many other nitrogen oxide emission control but N2O has no its particular method. Preventing further environmental pollution and global warming, it is essential to control N2O emission from industrial machines. In this study, the thermal decomposition experiment of N2O gas mixture is conducted by using cylindrical reactor to figure out N2O reduction and NO formation. And CHEMKIN calculation is conducted to figure out reaction rate and mechanism. Residence time of the N2O gas in the reactor is set as experimental variable to imitate real SNCR system. As a result, most of the nitrogen components are converted into N2. Reaction rate of the N2O gas decreases with N2O emitted concentration. At 800℃ and 900℃, N2O reduction variance and NO concentration are increased with residence time and temperature. However, at 1000℃, N2O reduction variance and NO concentration are deceased in 40s due to forward reaction rate diminished and reverse reaction rate appeared.

Liquid phase hydrogen peroxide decomposition for micro-propulsion applications

  • McDevitt, M. Ryan;Hitt, Darren L.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권1호
    • /
    • pp.21-35
    • /
    • 2017
  • Hydrogen peroxide is being considered as a monopropellant in micropropulsion systems for the next generation of miniaturized satellites ('nanosats') due to its high energy density, modest specific impulse and green characteristics. Efforts at the University of Vermont have focused on the development of a MEMS-based microthruster that uses a novel slug flow monopropellant injection scheme to generate thrust and impulse-bits commensurate with the intended micropropulsion application. The present study is a computational effort to investigate the initial decomposition of the monopropellant as it enters the catalytic chamber, and to compare the impact of the monopropellant injection scheme on decomposition performance. Two-dimensional numerical studies of the monopropellant in microchannel geometries have been developed and used to characterize the performance of the monopropellant before vaporization occurs. The results of these studies show that monopropellant in the lamellar flow regime, which lacks a non-diffusive mixing mechanism, does not decompose at a rate that is suitable for the microthruster dimensions. In contrast, monopropellant in the slug flow regime decomposes 57% faster than lamellar flow for a given length, indicating that the monopropellant injection scheme has potential benefits for the performance of the microthruster.

Silylene과 Silylene 전구체의 반응 특성 연구 (Reaction and Characterization of Silylene and its Precusor)

  • 공영건;안영만
    • 분석과학
    • /
    • 제7권3호
    • /
    • pp.321-327
    • /
    • 1994
  • 7, 7-dimethyl-1, 2, 3, 4, 5-pentaphenyl-7-silanorbornadiene을 과량의 methyl alcohol과 함께 저온 열분해반응을 시켰을 때 무색 침상 모양의 결정인 1-methoxydimethylsilyl-1, 2, 3, 4, 6-pentaphenylcyclohexa-2, 5-diene이 생성되었다. 그러나 7-silanorbornadiene을 ethyl alcohol과 함께 동시 광분해반응을 시켰을 때는 silylene이 생성되어 ethyl alcohol의 O-H 결합에 삽입 반응된 ethoxydimethylsilane이 생성되었다. 이와 같은 결과로 판단해 볼 때 7-silanorbornadiene의 저온 열분해반응과 광분해반응의 반응 메카니즘이 다르다는 사실을 알았다.

  • PDF

CMC 모델 기반 수치해석을 사용한 순산소 난류확산화염 구조 연구 (A Study on the Structure of Turbulent non-Premixed Oxy-fuel Flame Using CMC Model-based Simulation)

  • 김종수;;허강열;양원
    • 한국연소학회지
    • /
    • 제13권1호
    • /
    • pp.31-43
    • /
    • 2008
  • Oxy-fuel flame has a significantly different structure from that of air-fuel flame because of its high temperature. This study is aimed to find out the difference of the oxy-fuel flame structure in order to understand reaction mechanism closely, which is crucial to design real-scale oxy-fuel combustion system. By examining pictures of counterflow flame and LIF images, we found that oxy-fuel flame had two-zone structure: fuel decomposition region and distributed CO oxidation region. In the oxy-fuel flame, OH radical was distributed intensely through the whole flame due to its higher flame temperature than crossover temperature. For showing those features of the oxy-fuel flame, 1 MW scale IFRF oxy-natural gas burner was simulated by conditional moment closure(CMC) model. Calculation results were compared with experimental data, and showed agreements in trend. In the simulated distributions of fuel decomposition/CO oxidation rates, CO oxidation region was also separated from fuel decomposition zone considerably, which showed the two-zone structure in the oxy-fuel flame.

  • PDF

호열성 사상균 Thermoascus aurantiacus의 알코올분해대사 관련 효소학적 특성 (Enzyme Production Related to Alcohol Metabolism from Thermophilic Fungus Thermoascus aurantiacus)

  • 고희선;김현수
    • 한국미생물·생명공학회지
    • /
    • 제34권3호
    • /
    • pp.216-220
    • /
    • 2006
  • 본 균의 생육 및 효소생산에 유용한 탄소원으로서 자연계의 식물에 풍부한 펙틴을 탄소원으로 할 경우, 그 생육도는 전분보다 뛰어났으며, alcohol oxidase와 catalase의 생산량도 높아지는 것으로 나타났다. 특히 alcohol oxidase의 경우는 전분의 15배 이상의 생산량을 보여 본 균과 펙틴 이용성과의 관계를 시사하였고, 세포외 pectin esterase, pectinase등의 높은 활성이 검출되어 이를 증명하였다. 또한 alcohol oxidase 반응에서 생성되는 물질인 formaldehyde를 산화하는 formaldehyde dehydrogenase와, formate를 산화하여 $CO_2$를 생성하는 formate dehydrogenase의 반응을 발견하여, 본 균의 pectin 이용성과 관련한 일련의 에너지 대사계의 존재를 추정할 수 있었다.

메탄/순산소 혼합층에서 edge flame의 구조 (Structure of Edge Flame in a Methane-Oxygen Mixing Layer)

  • 최상규;김준홍;정석호;김종수
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제32회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.149-156
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF

메탄/순산소 혼합층에서 Edge Flame의 구조 (Structure of Edge Flame in a Methane-Oxygen Mixing Layer)

  • 최상규;김준홍;정석호;김종수
    • 한국연소학회지
    • /
    • 제11권1호
    • /
    • pp.19-26
    • /
    • 2006
  • Structure of edge flame established in a mixing layer, formed between two uniformly flowing pure $CH_4$ and pure $O_2$ streams, is numerically investigated by employing a detailed methane-oxidation mechanism. The numerical results exhibited the most outstanding distinction of using pure oxygen in the fuel-rich premixed-flame front, through which the carbon-containing compound is found to leak mainly in the form of CO instead of HC compounds, contrary to the rich $CH_4-air$ premixed flames in which $CH_4$ as well as $C_2H_m$ leakage can occur. Moreover, while passing through the rich premixed flame, a major route for CO production, in addition to the direct $CH_4$ decomposition, is found to be $C_2H_m$ compound formation followed by their decomposition into CO. Beyond the rich premixed flame front, CO is further oxidized into $CO_2$ in a broad diffusion-flame-like reaction zone located around moderately fuel-rich side of the stoichiometric mixture by the OH radical from the fuel-lean premixed-flame front. Since the secondary CO production through $C_2H_m$ decomposition has a relatively strong reaction intensity, an additional heat-release branch appears and the resulting heat-release profile can no longer be seen as a tribrachial structure.

  • PDF