• Title/Summary/Keyword: Decomposed Granite soil

Search Result 88, Processing Time 0.028 seconds

Geotechnical Properties and Environmental Effect of Waste Gymsum (폐석고의 공학적 특성 및 환경적 영향 분석에 관한 연구)

  • 신은철;오영인;이희재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.90-94
    • /
    • 1999
  • Waste gypsum is produced about 2.6million tons per year as a by-product in the process of TiO$_2$production. Geotechnical properties such as natural water content, specific gravity, Atterberg limits were determined to figure out the engineering characteristics waste gypsum. Grain-size distribution, compaction, CBR tests, and unconfined compression test for various mixing ratios between waste gypsum and decomposed granite soil 8t dredged soil. The environmentally adverse effect for mixed specimen with waste gypsum is far below than those of regulatory requirement.

  • PDF

Centrifugal Modelling on the Displacement Mode of Unpropped Diaphragm Wall with Surcharge (과재하중이 있는 Unpropped Diaphragm Wall의 변위양상에 관한 원심모델링)

  • 허열;이처근;안광국
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.135-145
    • /
    • 2004
  • In this study, the behavior of unpropped diaphragm walls on decomposed granite soil was investigated through centrifugal and numerical modelling. Centrifuge model tests were performed by changing the interval distance of surcharge. Excavation was simulated during the centrifuge tests by operating a solenoid valve that allowed the zinc chloride solution to drain from the excavation. In these tests, ground deformation, wall displacement and bending moment induced by excavation were measured. FLAC program which can be able to apply far most geotechnical problems was used in the numerical analysis. In numerical simulation, Mohr-Coulomb model fur the ground model, an elastic model for diaphragm wall were used for two dimensional plane strain condition. From the results of model tests, failure surface was straight line type, the ground of retained side inside failure line had downward displacement to the direction of the wall, and finally the failure was made by the rotation of the wall. The angle of failure line was about 67 ∼ 74$^{\circ}$, greater than calculated value. The locations of the maximum ground settlement obtained from model tests and analysis results are in good agreements. The displacement of wall and the change of the embedment depth is likely to have linear relationship.

Evaluation of Stability for Settlement Free Reinforced Earth Retaining Wall by Centrifuge Model Tests (원심모형실험에 의한 침하자유형 보강토 옹벽의 안정성 평가)

  • Ahn, Kwangkuk;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.23-34
    • /
    • 2006
  • In this study, the centrifugal tests were performed to evaluate the behavior of reinforced retaining wall that allows the settlement of reinforcement strip. To analyze the stability of reinforced retaining wall, which drives the settlement of reinforcement strip, the results were compared with the conventional reinforced retaining wall. In the centrifugal tests, the aluminum plate for the face was used and the aluminum foil was used as a reinforcement. The decomposed granite soil was adopted as a backfill. As a result, the settlement free reinforced retaining wall reached to the failure at 80g-level. In contrast, the conventional reinforced retaining wall was collapsed at 69g-level. It means that the settlement free reinforced retaining wall has the stronger stability than the conventional reinforced retaining wall. Also, vertical earth pressure of the settlement free reinforced retaining wall near the base of wall was higher 16% than that of the conventional reinforced retaining wall.

  • PDF

Growth Characteristics of Strawberry Runner Plants according to Mixing Ratio of Reused Rockwool, Decomposed Granite, and Horticultural Media (재사용 암면, 마사토 및 원예용 상토의 혼합비율에 따른 딸기 자묘의 생육 특성)

  • Jeong, Ji-Hee;Bae, Hyo Jun;Ko, Baul;Ku, Yang Gyu;Kim, Ho Cheol;Bae, Jong Hyang
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.497-503
    • /
    • 2022
  • This study was conducted to investigate the horticultural media + decomposed granite + reused rock wool in the following mixing ratio: Control = 100:0, M1 = 80:0:20, M2 = 60:30:10, M3 = 40:30:30, M4 = 30:40:30, M5 = 0:50:50 (reused rockwool : decomposed granite : horticultural media) and develop the physicochemical properties and the growth of 'Sulhyang' strawberry runner plant. In the physical aspect of the horticultural media, statistical differences were recognized that the bulk density and particle density were lower in the control and M1. But the bulk density and particle density were high in the M3, M4, and M5, because it had high mixing ratio between recycled rock wool and decomposed granite. EAW and WBC showed a similar tendency. The air porosity and total porosity were higher in control and M1 than M3, M4, M5. Exchangeable cation (K+, Ca2+, Na+, Mg2+) and base replacement capacity (CEC) were higher in control and M1, than M2, M3, M4, and M5. As a result of the cultivation of 'Sulhyang' runner plant, the plant length was long in M2, 32.1 cm and smaller than M5 to 28.4 cm. However, if the crown diameter, which is the growth indicator of the runner plant, all 6 treatments were formed 11.23 mm-12.03 mm, which is considered to be suitable for the growth of the runner plant. There wasn't a statistical difference between the weight and dry weight of the root. As a result, the growth difference of the seedlings by the horticulture media was similar. Therefore, considering the physical properties of the horticultural media, it was judged that the air porosity and total porosity would be improved when the recycled rock wool and the decomposed granite were properly mixed rather than the use of the horticultural media as a single medium, which would be advantageous for irrigation management.

A study on the machine load on shield advancing between soil ground and mix ground included core stone (토사지반과 핵석이 포함된 복합지반에서 쉴드TBM 굴진 시 장비부하에 관한 연구)

  • Kim, Ki-Hwan;Kim, Hyouk;Mun, Cheol-Hwa;Kim, Young-Hyu;Kim, Dong-Ho;Lee, Jae-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1039-1048
    • /
    • 2018
  • In urban tunnel construction, most of the Shield TBM method is applied to secure the safety of buildings and to minimize risks. On the other hand, in the urban development process, landfills are often embanked or improving in many cases, so that the boundary between the surface and the rock is often heterogeneous. In case of ground condition such as alluvial soil, granite, decomposed granite, core stone and rock with various layers, datas on shield TBM advancing according to each ground condition are analyzed, The characteristics of machine load were compared and analyzed. As a result, it can be predicted that the change of ground condition can be predicted by the tendency of discharge volume, thrust force and cutting wheel torque when the cutter is checked and replaced regularly on advancing under maintaining the design slurry pressure.

Shear Strength Characteristics of Unconsolidated-Undrained Reinforced Decomposed Granite Soil under Monotonic and Cyclic Loading (정.동적 하중에 의한 비압밀비배수 보강화강풍화토의 전단강도 특성)

  • Cho, Yong-Sung;Koo, Ho-Bon;Park, Inn-Joon;Kim, You-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.7
    • /
    • pp.13-21
    • /
    • 2006
  • When enforced earth is used for the retain wall and four walls, the most important thing would be how to maximize the land utilization. Accordingly, in case of enforced earth, we pile up the minimal height of earth ($20{\sim}50\;cm$) and harden the earth using a static dynamic hardening machine. In this paper, we tried to analyze and compare the stress transformation characteristics of reinforced weathered granite soil with geosynthetics when repetitive load is added to the enforced earth structure and when static load is added. The result is that the cohesion component of the strength increased greatly and the friction component decreased slightly.

Effect of Culture Soil Type and IBA in Root Initiation of Birdsfoot Trefoil (Lotus corniculatus L.) (배양토 종류 및 IBA 처리가 Birdsfoot Trefoil의 뿌리 유도에 미치는 영향)

  • Kim, Ki-Yong;Choi, Gi-Jun;Lee, Sang-Hoon;Lee, Joung-Kyong;Ji, Hee-Chung;Lee, Byung-Hyun;Kim, Jin-Seog
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.4
    • /
    • pp.229-234
    • /
    • 2007
  • To select the most proper soil for root initiation from stem cuts of Birdsfoot trefoil (Lotus corniculatus L.), eight-week-old stem cuts were cultured on three types of soil [commercial bed soil, decomposed granite (DCG), and river sand] for one month. The results showed that the root initiation ratios on DCG (77.8%) and river sand (70.0%) were relatively high, but the ratio on commercial bed soil (41.1%) was very low. To examine the effect of rare earth (RE) and Indole-3-Butyric Acid (IBA) on root initiation from stem cuts of Birdsfoot Trefoil, stem cuts were cultured on two types of soil (DCG and river sand) with treatment of RE and IBA for one month. The root initiation ratios turned out to be 90.0% (DCG with 60 ppm of RE), 80.0% (river sand with 20 ppm of RE), 96.7% (DCG with 40 ppm of IBA), and 96.7% (river sand with 40 ppm of IBA). These results suggested that the most efficient way for root initiation of Birdsfoot trefoil was to culture the stem cuts on river sand or DCG over 30 days with IBA treatment (40 ppm).

Model Tests on Behavior of Geogrid Reinforced Soil Walls with Vertical Spacing of Reinforcement Layers (보강재 설치 간격에 따른 지오그리드 보강토옹벽의 변형거동에 관한 모형실험)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Oh, Se-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.372-379
    • /
    • 2004
  • The model tests were conducted to assess the behavior characteristics of geogrid reinforced earth walls according to various surcharge loads and reinforcement spacing. The models were built in the box having dimension, 100cm tall, 140cm long, and 100cm wide. The reinforcement used was geogrid(tensile strength 2.26t/m). Decomposed granite soil(ML) was used as a backfill material. The LVDTs were installed on the model retaining walls to obtain the displacements of the facing. In the results, the maximum displacement of facing and tensile strain of geogrid was measured at 0.7H(H is wall height) from the bottom of reinforced wall.

  • PDF

Geogrid Reinforced Decomposed Granite Soil (화강풍화토의 지오그리드보강 특성연구)

  • 주재우;박종범;김병욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.173-182
    • /
    • 2001
  • 보강토공법이란 다양한 보강재를 흙속에 삽입하여 흙이 갖지 못하는 인장력을 보충함으로써 구조물을 안정화시키는 공법이다. 그리고 기존공법에 비해 경제적 구조물로 인식되고 있으며 또한 최근들어 전세계적으로 빈발하는 지진에도 그 저항력이 아주 큰 구조물임이 입증이 되어 현재 토목분야에서 각광을 받고 있는 공법이다. 보강토옹벽의 뒤채움재료로서 현재 우리나라에서 쉽게 구할 수 있는 화강풍화토가 많이 사용되고 있다. 그러나, 설계에 필요로 하는 이에 대한 데이터는 그리 많지 않다. 본 연구에서는 어디서나 쉽게 구할 수 있는 화강풍화토를 채취하여 대형 인발시험을 실시하였다. 인발시 흙과 보강재 사이의 상호거동을 파악하기 위하여 인발변위, 인발력, 삽입보강재의 각 지점에서의 절점변위 등을 측정하였다. 그리고 구속응력의 영향을 검토하기 위해서 이들 응력을 0.2, 0.5, 1.0kg/$\textrm{cm}^2$으로 변화시켜 실험을 행하였다. 그리고, 다짐률이 이들 상호거동에 어떤 영향을 미치는지 알아보기 위해서 다짐률을 65%, 80%m 95% 등으로 시료를 제작하여 서로 비교를 행하였다. 실험결과로부터 화강풍화토의 보강재와의 상호거동특성을 파악하여 제시하였다. 특히 다짐률은 상호거동특성에 큰 영향을 미치는 것으로 드러났으며, 화강토의 경우, 꽤 큰 점착특성이 존재하고 있음을 알 수 있었다.

  • PDF

A Study on the Shear Characteristics of the Decomposed Granite Soils Using Direct Shear Test (직접전단시험(直接剪斷試驗)에 의한 화강토(花崗土)의 전단특성(剪斷特性)에 관(關)한 연구(硏究))

  • Lee, Dal Won;Kang, Yea Mook;Cho, Seong Seup
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.2
    • /
    • pp.227-242
    • /
    • 1986
  • This paper describes the observed behavior in the direct shear test on decomposed granite soil having the complicate engineering properties at various different levels of factors. The objectives of this study were to investigate the characteristics of the decomposed granite soil under controlled various moisture content, dry density, strain rate and soaking which give influence to the shear strength. The results were summarized as follows; 1. The shear strength was decreased remarkably with the increasing of moisture contents of A and B soil were 5-10% and 15-20% respectively. 2. Cohesion and angle of internal friction were decreased with the increasing of moisture content and increased with the increasing of dry density. 3. The shear strength was increased with the increasing of normal stress and volume change was decreased on the whole. The shear strength was generally increased with the increasing of the strain rate. 4. As dry density increases, A-soil shows the progressive failure and the decrease of volume change while B-soil shows the initial failure and the increase of volume change. 5. The relationships between the soaked and unsoaked specimens were as follows ; ${\tau}_f=0.1009+1.026{{\tau}_f}^*$ (A-soil), ${\tau}_f=0.1586+0.8005{{\tau}_f}^*$ (B-soil) 6. Angle of internal friction of the direct shear test shows larger value than that of the triaxial compression test. All effective stress path was nearly similar.

  • PDF