• 제목/요약/키워드: Decolorization

검색결과 322건 처리시간 0.02초

Penicillium janthinellum 균체를 이용한 생물흡착에 의한 염료의 제거 (Removal of Dyes by the Biosorption Using Biomass of Penicillium janthinellum)

  • 이제혁;전억한
    • KSBB Journal
    • /
    • 제14권1호
    • /
    • pp.31-35
    • /
    • 1999
  • Penicillium janthinellum의 생균체와 변형 균체를 사용한 azo와 reactive계 염료의 생흡착에 대한 연구가 수행되었다. 반응액의 pH가 초기 흡착율과 탈색에 영향을 주어, 최적 pH는 3.0이었으며, 최적 온도는 $40^{\circ}C$이었다. Reactive계 염료인 Apollocion Red 7EB와 Apollfix Red SF-3B와 Apollocion Red HE-3B는 각각 초기 흡착율이 0.06, 0.086, 0.07mg/g.mm이었다. Azo와 reactive 계 염료들을 함유한 혼합염료도Pen janthinellum 균체에 흡착되어 0.084mg/g.min의 초기 흡착율을 보였다. Detergent 첨가시 탈색 백분율과 초기 흡착율은 대조군의 경우보다 낮았다. 또한 이온의 첨가는 염료의 흡착율에 영향을 미치지 않았다 Pen janthinellum의 변형 균체도 염료의 흡착율을 보였고, Apollocion Red 7EB의 흡착에 있어 이온교환수지보다 월등한 흡착능을 보였다.

  • PDF

트리페닐메탄계와 아조계 색소를 탈색할 수 있는 Klebsiella pneumoniae WL-5의 분리 및 특성 (Isolation and Characterization of Klebsiella pneumoniae WL-5 Capable of Decolorizing Triphenylmethane and Azo Dyes)

  • 우징;이영춘
    • 생명과학회지
    • /
    • 제18권10호
    • /
    • pp.1331-1335
    • /
    • 2008
  • 여러 가지 난분해성 색소에 대하여 탈색능을 나타내는 Klebsiella pneumoniae WL-5이 염색폐수처리장의 활성슬러지로부터 분리되었다. 이 세균은 정치배양과 at pH 6-8 및 $30-35^{\circ}C$에서 높은 탈색능을 나타내었다. Congo Red색소에 대해서는 $200\;{\mu}M$ 농도에서 12시간 배양하였을 때 90% 이상이 탈색되었고, Malachite Green, Brilliant Green, Reactive Black-5에 대해서는 $10\;{\mu}M$ 농도에서 80% 이상이 탈색되었지만, Reactive Red-120, Reactive Orange-16, Crystal Violet에 대해서는 $10\;{\mu}M$ 농도에서 각각 46%, 25%, 13%의 비교적 낮은 탈색능을 나타내었다. 트리페닐메탄계 색소는 세포표면에의 흡착에 의한 탈색을 나타내었고, 아조계 색소는 지금까지 알려져 있지 않는 새로운 효소반응계에 의해서 탈색된다는 것을 제시하였다.

차아염소산나트륨을 이용한 새우 키틴의 탈색 (Decolorization of Shrimp Chitin Using Sodium Hypochlorite)

  • 안창원;남희섭;이형재;신용철
    • 한국식품과학회지
    • /
    • 제26권6호
    • /
    • pp.787-790
    • /
    • 1994
  • 새우껍질 건조 분말을 원료로 하여 품질이 우수하고 효과적으로 탈색된 chitin을 제조하는 공정을 정립하였다. 새우껍질에서 희분을 제거하기 위한 최적조건은 1.66% HCl로 2시간 교반 추출하는 것이었으며, 단백질은 3% NaOH로 1시간 처리에 의해 효과적으로 제거되었다. 또, 탈색제로 0.16% 차아염소산나트륨을 30분간 처리하여 백색의 키틴을 얻을 수 있었다. 이 탈색처리는 ethanol, acetone, $H_2O_2$처리 등의 기존에 보고된 탈색방법들보다 월등한 효과를 나타내었다. 실험적으로 제조된 chitin의 IR spectrum 양상은 시판 chitin들과 유사하였으며, 탈아세틸화도는 22.8%외 비교적 낮은 값을 나타내어 품질이 우수한 chitin임을 알 수 있었다.

  • PDF

Identification of Clostridium perfringens AB&J and Its Uptake of Bromophenol Blue

  • Kim, Jeong-Dong;An, Hwa-Yong;Yoon, Jung-Hoon;Park, Yong-Ha;Fusako Kawai;Jung, Chang-Min;Kang, Kook_-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권4호
    • /
    • pp.544-552
    • /
    • 2002
  • Several microorganisms from rat and human feces and lumen fluid of cows were screened for their ability to decolorize the synthetic dyes. Consequently, a novel dye-degrading strain AB&J was isolated. Taxonomic identification including 165 rDNA sequencing and phylogenetic analysis indicated that the isolate had 99.9% homology in its 165 rDNA base sequence with Clostridium perfringens. After 27 h Incubation with the strain, brilliant blue R, bromophenol blue, crystal violet, malachite green, methyl green, and methyl orange were decolorized by about 69.3%, 97.7%, 96.3%, 97.9%, 75.1%, and 97.2%, respectively. The triphenlmethane dye, bromophenol blue, was decolorized extensively by growing Clostridium perfringens AB&J cells in liquid cultures under anaerobic condition, although their growth was strongly inhibited in the initial stage of incubation. This group of dyes is toxic, depending on the concentration used. The dye was significantly decolorized at a relatively lower concentration of below 50 $\mu g \;ml^{-1}$, however, the growth of the cells was mostly suppressed at a dye concentration of 100 $\mu g \;ml^{-1}$. The decolorization activity in cell-free extracts was much higher in cytoplasm than in periplasm and cytoplasmic membrane. Therefore, the enzyme related uptake of bromophenol blue seemed to be localized in cytoplasm. The optimal pH and temperature of bromophenol blue uptake fur decolorization activities were 7.0 and 4$0^{\circ}C$, respectively.

Methylene Blue의 오존(O3) 산화반응에 관한 연구 (A study of Ozone Oxidation of Methylene Blue)

  • 이철규;김문찬
    • 공업화학
    • /
    • 제16권3호
    • /
    • pp.366-371
    • /
    • 2005
  • 본 연구에서는 methylene blue의 오존 산화하는 동안 BOD, COD, TOC, 흡광도 그리고 탈색 비율을 분석하였으며, 오존산화반응은 methylene blue가 충진되어 있는 원형모양의 반응기에서 수행한 결과 다음과 같은 결론을 얻었다. 탈색도는 최대파장(${\lambda}_{max}$, 660 nm)에서 흡광도를 측정하였다. 오존농도는 $50{\pm}10mg/L$를 사용하였으며 40 min 후 거의 오존산화반응이 끝났다. 그 결과로 $30^{\circ}C$에서 오존산화 반응 후 $TOC/TOC_0$ 비율은 83.8%로 나타났고, COD는 초기값보다 44.0% 감소하였다. 그리고 $BOD_5/COD$ 비율은 64.2%에서 90.8%로 오존산화 반응 후 생분해도가 증가하는 것으로 나타났다. 반응속도상수는 $3.30{\times}10^{-2}min^{-1}$로 나타났으며, 활성화 에너지는 $3.01kcal{\cdot}mol^{-1}$로 나타났다.

Multiple Tolerances and Dye Decolorization Ability of a Novel Laccase Identified from Staphylococcus Haemolyticus

  • Li, Xingxing;Liu, Dongliang;Wu, Zhaowei;Li, Dan;Cai, Yifei;Lu, Yao;Zhao, Xin;Xue, Huping
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권4호
    • /
    • pp.615-621
    • /
    • 2020
  • Laccases are multicopper oxidases with important industrial value. In the study, a novel laccase gene (mco) in a Staphylococcus haemolyticus isolate is identified and heterologously expressed in Escherichia coli. Mco shares less than 40% of amino acid sequence identities with the other characterized laccases, exhibiting the maximal activity at pH 4.0 and 60℃ with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) as a substrate. Additionally, the Mco is tolerant to a wide range of pH, heavy metal ions and many organic solvents, and it has a high decolorization capability toward textile dyes in the absence of redox mediators. The characteristics of the Mco make this laccase potentially useful for industrial applications such as textile finishing. Based on BLASTN results, mco is found to be widely distributed in both the bacterial genome and bacterial plasmids. Its potential role in oxidative defense ability of staphylococci may contribute to the bacterial colonization and survival.

액상첨가제에 의한 칼라로도 블록 무기 안료층의 특성 향상 (Enhancement in the physical properties of inorganic pigment layer in the color block by incorporation of n liquid additive)

  • 이동명;박동욱;이준희;김상민;김대영;김정조;김진곤;조현
    • 한국결정성장학회지
    • /
    • 제16권5호
    • /
    • pp.222-226
    • /
    • 2006
  • Carboxylated styrene-butadiene계 액상 첨가제가 칼라 보도 블록 무기 안료층의 미세구조, 기계적 특성 및 탈색 저항성에 미치는 영향에 대하여 조사하였다. 액상 첨가제를 첨가함에 따라 겉보기 기공률과 흡수율이 감소한 더 치밀한 미세구조와 균일한 안료 분포를 나타내는 무기 안료층을 얻을 수 있었다. 또한 기계적 강도 및 탈색저항성이 현저히 향상됨을 확인하였다.

산화제 생성율이 높은 촉매성 산화물 전극(DSA)의 개발에 관한 연구(II) (A Study on the Preparation of the Dimensionally Stable Anode(DSA) with High Generation Rate of Oxidants(II))

  • 박영식;김동석
    • 한국환경과학회지
    • /
    • 제18권1호
    • /
    • pp.61-72
    • /
    • 2009
  • Fabrication and oxidants production of 3 or 4 components metal oxide electrode, which is known to be so effective to destruct non-biodegradable organics in wastewater, were studied. Five electrode materials (Ru as main component and Pt, Sn, Sb and Gd as minor components) were used for the 3 or 4 components electrode. The metal oxide electrode was prepared by coating the electrode material on the surface of the titanium mesh and then thermal oxidation at $500^{\circ}C$ for 1h. The removed RhB per 2 min and unit W of 3 components electrode was in the order: Ru:Sn:Sb=9:1:1 > Ru:Pt:Gd=5:5:1 > Ru:Sn=9:1 > Ru:Sn:Gd=9:1:1 > Ru:Sb:Gd=9:1:1. Although RhB decolorization of Ru:Sn:Sb:Gd electrode was the highest among the 4 components electrode, the RhB decolorization and oxidants formation of the Ru:Sn:Sb=9:1:1 electrode was higher than that of the 3 and 4 components electrode. Electrogenerated oxidants (free Cl and $ClO_2$) of chlorine type in 3 and 4 components electrode were higher than other oxidants such as $H_2O_2\;and\;O_3$. It was assumed that electrode with high RhB decolorization showed high oxidant generation and COD removal efficiency. OH radical which is electrogenerated by the direct electrolysis was not generated the entire 3 and 4 components electrode, therefore main mechanism of RhB degradation by metal oxide electrode based Ru was considered indirect electrolysis using electrogenerated oxidants.

염색폐수 처리공정에서 COD fraction의 변화와 색도처리 (Evaluating the Potential Decolorization by Testing COD Fractions in Textile Wastewater Treatment Processes)

  • 하준수;박후원;김성원;윤예진;유성환;이상협
    • 한국물환경학회지
    • /
    • 제24권5호
    • /
    • pp.537-542
    • /
    • 2008
  • Textile industry has been recognized as an important pollution source due to its consumption of large volumes of water and chemicals. Textile wastewater contains very diverse chemicals in types and composition, among them the presence of dyes is highly visible and undesirable. In spite of these problems, there has not been a proper control for the wastewater because many dyes are difficult to be degraded or decolorized due to their complex structure and synthetic characteristics. This study has been progressed to evaluate more easily the potential decolorization of advanced treatment processes. It has been surveyed with the Y textile complex wastewater treatment plant, the raw wastewater has appeared very difficult biodegradability by 4.7 of $CODcr/BOD_5$ and 1,158.9 degree of color. In view of CODcr fractions, biodegradable COD portion was 46.4%, colloidal COD and real soluble COD was 45.3% and 31.5% each others. From research on unit processes, the degradable coefficient (k) became from 0.065 to $0.125d^{-1}$ by the processes, the decolorization appeared best efficiency by 30.1% (458.4 degree) in pre-ozone process. On the effluent from the biological process, the filterable CODcr became 129.3 mg/L, the biodegradable portion appeared 64.7% (83.6 mg/L), and the fixed dissolved solid (FDS), non-reactivity (NR), appeared very heavy portion by 80.5% (1,659.0 mg/L).

Comparison of Two Laccases from Trametes versicolor for Application in the Decolorization of Dyes

  • Li, Qi;Ge, Lin;Cai, Junli;Pei, Jianjun;Xie, Jingcong;Zhao, Linguo
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권4호
    • /
    • pp.545-555
    • /
    • 2014
  • It has been previously demonstrated that laccases exhibit great potential for use in several industrial and environmental applications. In this paper, two laccase isoenzyme genes, lccB and lccC, were cloned and expressed in Pichia pastoris GS115. The sequence analysis indicated that the lccB and lccC genes consisted of 1,563 and 1,584 bp, and their open reading frames encoded 520 and 527 amino acids, respectively. They had 72.7% degree of identity in nucleotides and 86.7% in amino acids. The expression levels of LccB and LccC were up to 32,479 and 34,231 U/l, respectively. The recombinant laccases were purified by ultrafiltration and $(NH_4)_2SO_4$ precipitation, showing a single band on SDS-PAGE, which had a molecular mass of 58 kDa. The optimal pH and temperature for LccB were 2.0 and $55^{\circ}C$ with 2,2'-azinobis-[ 3-ethylbenzthiazolinesulfonic acid (ABTS) as a substrate, whereas LccC exhibited optimal pH and temperature at 3.0 and $60^{\circ}C$. The apparent kinetic parameters of LccB were 0.43 mM for ABTS with a $V_{max}$ value of 51.28 U/mg, and the Km and $V_{max}$ values for LccC were 0.29 mM and 62.89 U/mg. The recombinant laccases were able to decolorize five types of dyes. Acid Violet 43 (100 g/ml) was completely decolorized by LccB or LccC (2 U/ml), and the decolorization of Reactive Blue KN-R (100 g/ml) was 91.6% by LccC (2 U/ml). Thus, the study characterizes useful laccase isoenzymes from T. versicolor that have the capability of being incorporated into the treatment of similar azo and anthraquinone dyes from dyeing industries.