• Title/Summary/Keyword: Deck crane

Search Result 29, Processing Time 0.021 seconds

Safety Assessment for Installation of Deck Crane by Lifting (데크 크레인의 리프팅 설치 작업에 대한 안전성 평가)

  • Ryu, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3680-3684
    • /
    • 2015
  • A deck crane is installed on the deck of a ship by lifting method using tower crane or floating crane. The safety assessment for two points lifting method should be preceded to ensure a safe installation of deck crane. In this study, finite element models of deck crane and fixing jig are generated for the structural analysis which can evaluate a safety of lifting method. Also, reaction forces and boundary conditions considering lifting state are applied to the structural analysis. The proposed safety assessment method can be useful as an analytic tool that can provide a safer procedure for installation of deck crane by lifting method.

Structural Analysis and Optimization of a Pedestal for Deck Crane (데크 크레인용 페데스탈의 구조해석 및 최적화)

  • Choi, Dong-Hwan;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.95-100
    • /
    • 2012
  • A deck crane is installed on the deck of a ship when there is no adequate facility for loading and unloading in dock or harbor. Deck cranes in Korea have been imported from abroad, and the import-substitution effect will arise if its production can be localized. Now, it is required to suggest the structural design of a deck crane that meet the domestic criterion, considering loading condition. In this study, the structural analysis of a pedestal in the deck crane was peformed by finite element method to investigate the strength requirement. In addition, the structural design of a pedestal was suggested by using ANSYS and VisualDOC. The optimized structure of a pedestal was determined, considering lightweight design.

A study on Design of Crane Post for Multi-Purpose Cargo vessel (다목적 화물선의 Crane Post설계에 관한연구)

  • Jeon, Tae-Byeong;Im, Chae-Hwan
    • 한국기계연구소 소보
    • /
    • s.16
    • /
    • pp.127-136
    • /
    • 1986
  • Recently deck crane of multi purpose cargo vessel (MPCV) is designed to posi¬tion in side instead of in the center line of the upper deck with a view to reduce the transportation cost and shipbuilding cost by shortening the length of ship. In this paper, the crane post was at first designed according to the crane maker’s specification and parent ship and the structure is analysed with Finite Ele¬ment Method. Through the careful reviews on the result of analysis, the final design of crane post was modified. The crane post is designed as a cylindrical in upper part and hexagonal in lower part instead of cylindrical on the whole as before. The connecting part of crane post is designed with the form of mixture of the cylinderical and hexagonal. Since the center of cylindrical and hexagonal section are not on the same line, it is expected to have the stress concentration. So, in order to attenuate the concentrated stress on the connecting part, the upper and lower parts was stiffened by inserting plate to enlarge the area of welding. The structure of deck part includes the tank side floor which is depend on the lower structure of the crane post that would support the force of the crane post by placing with 1.5 frame interval of the vertical plate.

  • PDF

Weight Reduction Design for a JIB of Deck Crane for Shipment (선박용 갑판크레인의 지브의 경량화설계)

  • Han, Dong-Seop;Lee, Moon-Jae;Han, Geun-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.396-400
    • /
    • 2009
  • The demand of JIB crane to handle a container or a bulk in a vessel is increasingly because of the growth of the scale of trade through the sea. This deck crane such as JIB crane is required the weight reduction design because it is installed in the deck of a vessel due to the environment regulation. In this study first we carry out the structural analysis of JIB with respect to the luffing angle of it to calculate the maximum equivalent stress of JIB, and next the optimum design for the weight reduction design of JIB. The thickness in a cross section of JIB is adopted as the design variable, the weight of JIB as the objective function, and the von mises stress as the constraint condition for the optimum design of JIB using the ANSYS 10.0.

Braking Characteristics of Friction Disk made of Carbon Paper for Wet-type Multiple Disk Brakes of Crane Turning Decelerator (크레인 선회감속기의 습식 다판 브레이크를 위한 카본 페이퍼 마찰 디스크의 제동 특성)

  • Cho, Yonsang;Bae, Myongho
    • Tribology and Lubricants
    • /
    • v.28 no.3
    • /
    • pp.112-116
    • /
    • 2012
  • wet-type multiple disk brakes are very important parts of turning decelerator for deck crane, because they are advanced in durability and braking power, and can be designed compactly. Thus, we designed and made wet-type multiple disk brakes of turning decelerator for deck crane to be localization of these imported all. In this study, wet multiple disk brakes were made a comparative test with the 2 types materials of friction disk by the SAE No.2 dynamometer. The friction characteristics were measured and analyzed to decide a suitable material as wear depth of friction disk and dynamic and static friction coefficient.

A Research of the Flow-Field Measurement Above the Flight Deck on LHP by PIV System (입자영상유속계를 이용한 대형수송함(LPH) 갑판 상부의 유동장 측정 연구)

  • Shim, Hojoon;Chung, Jindeog;Cho, Taehwan;Lee, Seunghoon;Song, Gisu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.225-234
    • /
    • 2022
  • The flow field measurement above whole area of the flight deck on 'Landing Platform Helicopter (LPH)' was performed by using PIV system in wind tunnel. In various heading angle conditions (0deg, -30deg, -45deg, -60deg, -75deg and ±90deg), the velocity fields such as U velocity & V velocity were measured at three different height above flight deck. Due to the geometrical characteristics of several bodies like deck, crane and super-structure, various vortex were generated. When the heading angle is 0deg, the deck edge vortex by flight deck and massive separation by super-structure were clearly observed by visualization with smoke and PIV, respectively. In other heading angles, the acceleration of flow in space between crane and super-structure were detected. And area with flow separation by super-structure is directly related to the heading angle of vessel.

Vibration reduction of provision crane in a ship by structural dynamic modification (구조변경을 통한 선박용 Provision Crane의 진동저감)

  • 김극수;조성재;최수현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.433-437
    • /
    • 2004
  • A provision crane is generally installed on the upper deck to the rear of the accommodation of the ship in order to load and unload engine part or something heavy. There are two types of provision cranes: one is jib-type and the other is monorail-type. So the natural frequency of the jib-type crane equipment is low, therefore, there are some possibility of resonance between crane structure and the main excitation sources of the ship in normal operating range. This study describe a vibration reduction technique for provision crane by applying a proper countermeasure through finite element analysis and modal test. In order to find out weak point in design of provision crane, a sensitive analysis has been performed.

  • PDF

On the Fatigue Analysis of Large Crane Pedestal in Drillship (드릴십의 대형 크레인 페데스털의 피로해석에 관한 연구)

  • Lee, Jeong-Hoon;Lee, Joo-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.342-345
    • /
    • 2011
  • Drillship has several large cranes to handle the various equipments for drilling work. These cranes are supported by crane pedestals which are installed on main deck. Two major loads, i.e., hull girder bending moment and crane operation loading shall be considered to confirm the structural strength in way of crane pedestal. In this paper, the fatigue analysis is performed for the structures in way of crane pedestal considering two(2) loads as mentioned in the above is introduced.

Multibody Dynamics Simulation and Experimental Study on the Tagline Control of a Cargo Suspended by a Floating Crane (해상크레인으로 인양하는 중량물의 Tagline 제어를 위한 다물체계 동역학 시뮬레이션 및 실험)

  • Ku, Nam-Kug;Lee, Kyu-Yuel;Kwon, Jung-Han;Cha, Ju-Hwan;Ham, Seung-Ho;Ha, Sol;Park, Kwang-Phil
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.13-22
    • /
    • 2010
  • This paper describes tagline PD control for reduction of motion for the heavy cargo(load) suspended by a floating crane. The equations of motion are set up considering the 6-degree-of-freedom floating crane and the 6-degree-of-freedom load based on multi-body system dynamics. The tagline mechanism is applied to floating crane to control motion of the heavy cargo(load). The winch, mounted on the deck of floating crane, is used to control the tension of tagline. To generate control force, PD control algorithm is applied. Numerical simulation and experiment is executed to verify the tagline control mechanism. The numerical simulation and experiment shows that the tagline control mechanism reduces the motion of the load suspended by a floating crane.

Vibration Control of Working Booms on Articulated Bridge Inspection Robots (교량검사 굴절로봇 작업붐의 진동제어)

  • Hwang, In-Ho;Lee, Hu-Seok;Park, Young-Hwan;Lee, Jong-Seh
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.178-183
    • /
    • 2008
  • A robot crane truck is being developed by the Bridge Inspection Robot Development Interface(BRIDI) for an automated and/or teleoperated bridge inspection. At the end of the telescoping boom allows the operator to scan the bridge structure under the deck trough the camera. Boom vibration induced by wind and deck movement can cause serious problems in this scanning system. This paper presents a control system to mitigate such vibration of the robot boom In the proposed control system an actuator is installed at the end of the working boom. This control system is studied using a mathematical model analysis with LQ control algorithm and a scaled model test in the laboratory. The study indicates that the proposed system is efficient for the vibration control of the robot booms, thereby demonstrating its immediate applicability in the field.

  • PDF