• 제목/요약/키워드: Decision-trees

검색결과 311건 처리시간 0.022초

대용량 복수후보 TTS 방식에서 합성용 DB의 감량 방법 (A DB Pruning Method in a Large Corpus-Based TTS with Multiple Candidate Speech Segments)

  • 이정철;강태호
    • 한국음향학회지
    • /
    • 제28권6호
    • /
    • pp.572-577
    • /
    • 2009
  • 대용량 음성 DB를 사용하는 음편접합 TTS는 부가적인 신호처리 기술을 거의 사용하지 않고, 문맥을 반영하는 여러 합성유닛들을 결합해 합성음을 생성하기 때문에 높은 자연성을 가진다는 장점이 있다. 중복되는 음편의 감량을 위해서 음성인식분야에서 사용되는 결정트리 기반의 트라이폰 군집화 알고리즘을 사용할 수 있지만 음편 내의 음향적 천이 특성을 반영하기가 어렵고 문맥질의 적용이 체계적이지 못하여 TTS에 바로 적용하기 어렵다. 본 논문에서는 DB감량을 위해 결정 트리 기반의 새로운 음소 군집화 방법을 제안한다. 먼저 음편의 처음, 중간, 끝 3프레임의 각 13차 MFCC벡터를 통합한 39차의 벡터로 음편내의 변이성과 연결성을 표현한다. 결정 트리의 상위부분에서는 포괄적인 문맥질의를 하위부분에서는 세부적인 문맥질의를 적용시켰다. 그리고 기존 결정트리 시스템과 제안된 시스템과의 성능평가를 위하여 평가용 트라이폰 모델의 음편과 트리에서 탐색한 트라이폰 모델의 음편들 간의 음향적 유사도를 DTW를 적용하여 계산하였다. 실험결과 제안된 방법을 사용할 경우 전체 음성DB의 크기를 23%로 줄일 수 있었고, 음향적 유사도가 높은 음편을 선택함을 보이므로 향후 소용량 DB TTS에 적용 가능성을 보였다.

초분광 이미지를 이용한 배나무 화상병에 대한 최적 분광 밴드 선정 (Spectral Band Selection for Detecting Fire Blight Disease in Pear Trees by Narrowband Hyperspectral Imagery)

  • 강예성;박준우;장시형;송혜영;강경석;유찬석;김성헌;전새롬;강태환;김국환
    • 한국농림기상학회지
    • /
    • 제23권1호
    • /
    • pp.15-33
    • /
    • 2021
  • 화상병이란 erwinia amylovora라는 강한 전염성을 보유하고 있어 감염 시 1년 내에 과수를 고사시키며 그 중심으로 반경 500m이내에 과수 재배를 불가능하게 만드는 세균성 바이러스이다. 이 화상병은 과수의 잎과 가지를 진한 갈색 또는 검은색으로 변색시키기 때문에 분광학적으로 검출이 가능하다고 판단되며 이는 다중분광센서를 탑재한 무인기를 이용하는 것이 효율적이다. 그러나 다중분광센서는 적은 중심 파장과 함께 넓은 반치전폭(FWHM)을 가지고 있어 화상병에 가장 민감하게 반응하는 파장 대역을 파악하기 어렵다. 그렇기 때문에, 본 논문에서는 화상병에 감염된 잎과 가지와 비감염된 잎과 가지의 초분광 이미지를 5 nm FWHM으로 취득한 후 각각 10 nm, 25 nm, 50 nm와 80 nm FWHM로 평준화한 후 샘플을 7:3, 5:5와 3:7의 비율로 훈련데이터와 검증데이터로 나누어 의사결정트리 기법으로 최적의 파장을 선정하고 overall accuracy (OA)와 kappa coefficient (KC)를 이용한 분류 정확도 평가를 통해 배나무 화상병 검출가능성을 확인하였다. 화상병에 감염 및 비감염된 잎과 가지의 초분광 반사율을 비교한 결과, green, red edge 및 NIR 영역에서 차이가 두드러지게 나타났으며 첫 번째 분류 노드로 선택된 파장 영역은 대체로 750 nm와 800 nm였다. 잎과 가지 영역의 영상데이터를 의사결정트리 기법을 이용하여 분류정확도를 종합적으로 비교한 결과, 50nm FWHM 인 4개 대역(450, 650, 750, 950nm)은 10nm FWHM인 8개 대역(440, 580, 660, 680, 680, 710, 730, 740nm)의 분류 정확도 차이가 OA에서 1.8%와 KC에서 4.1%로 나타나 더 낮은 비용의 밴드패스필터인 50nm FWHM을 이용하는 것이 더 유리하다고 판단된다. 또한 기존의 50nm FWHM 파장대역들에 25nm FWHM파장대역들(550, 800nm)을 추가하는 것을 통해 화상병 검출뿐만 아니라 농업에서 다양한 역할을 수행할 수 있는 다중분광센서를 개발할 수 있다고 판단된다.

RFM 기반 SOM을 이용한 매장관리 전략 도출 (Strategy for Store Management Using SOM Based on RFM)

  • 정윤정;최일영;김재경;최주철
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.93-112
    • /
    • 2015
  • 소비자의 소비성향이 필요 품목을 중심으로 근거리에서 구매하는 근린형으로 변화함에 기존의 소매점은 식료품, 생활용품을 위주로 제공하는 슈퍼마켓, 하이퍼마켓 또는 편의점으로 진화하고 있다. 따라서 소매점이 한정된 공간에서 효율적으로 공간을 활용하고 매출을 증대하기 위해서는 소비자의 구매욕을 충족시킬 수 있는 상품배치와 적정한 재고수준을 유지하는 것이 매우 중요하다. 본 연구에서는 소매점의 판매 상품에 대하여 RFM 기반 SOM 군집화를 하여 효율적으로 매장을 관리할 수 있는 상품 배치전략 및 재고전략을 제안하였다. 실제 M마트의 판매데이터를 이용하여 RFM모델을 상품에 적용한 후, 기존 문헌 연구뿐만 아니라 해석 가능성, 응용 가능성 등을 고려하여 3X3 총 9개의 군집으로 분류하여 분석한 결과, 주요 군집으로 R값, F값, M값이 모두 높은 군집, R값, F값, M값 모두 낮은 군집, R값만 높은 군집, F값만 높은 군집이 도출되었다. 본 논문에서는 다른 군집과 비교시 R값, F값, M값이 차이를 보이는 주요 4개의 군집의 상품 배치 및 재고 전략을 제시하였다. R값, F값, M값이 모두 높은 군집의 상품은 소비자 동선을 늘림으로써 상품 노출을 확대시킬 수 있는 장소에 배치하여야 할 뿐만 아니라 높은 수준의 재고를 보유할 필요가 있다. 반면에 R값, F값, M값이 모두 낮은 군집의 상품은 가시성이 낮은 곳에 배치하고 최소한의 안전재고만 보유할 필요가 있다. 또한 R값이 높은 군집은 신상품으로 매장 입구에 배치하여 상품의 판매를 유도할 필요가 있다. 그리고 F값만 높은 군집의 경우, R값과 M값이 평균 값 보다 작은 상품들의 군집이므로 최근에는 판매가 저조하며 빈도 수에 비해 총 판매액이 낮다는 것을 유추할 수 있다. 따라서 현재보다 과거에 많이 판매된 저가의 상품군집으로 재고 수준을 점차 감소시킬 필요가 있다. 본 연구에서 제시한 방법은 POS 시스템의 보유한 소매점에서 상품배치 및 재고관리 방법으로 활용되어 매장의 수익성 증대에 기여할 수 있을 것으로 기대된다.

재무예측을 위한 Support Vector Machine의 최적화 (Optimization of Support Vector Machines for Financial Forecasting)

  • 김경재;안현철
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.241-254
    • /
    • 2011
  • Support vector machines(SVM)은 비교적 최근에 등장한 데이터마이닝 기법이지만, 재무, CRM 등의 경영학 분야에서 많이 연구되고 있다. SVM은 인공신경망과 필적할 만큼의 예측 정확도를 보이는 사례가 많았지만, 암상자로 불리는 인공신경망 모형에 비해 구축된 예측모형의 구조를 이해하기 쉽고, 인공신경망에 비해 과도적합의 가능성이 적어서 적은 수의 데이터에서도 적용 가능하다는 장점을 가지고 있다. 하지만, 일반적인 SVM을 이용하려면, 인공신경망과 마찬가지로 여러 가지 설계요소들을 설계자가 선택하여야 하기 때문에 임의성이 높고, 국부 최적해에 수렴할 가능성도 크다. 또한, 많은 수의 데이터가 존재하는 경우에는 데이터를 분석하고 이용하는데 시간이 소요되고, 종종 잡음이 심한 데이터가 포함된 경우에는 기대하는 수준의 예측성과를 얻지 못할 가능성이 있다. 본 연구에서는 일반적인 SVM의 장점을 그대로 유지하면서, 전술한 두 가지 단점을 보완한 새로운 SVM 모형을 제안한다. 본 연구에서 제안하는 모형은 사례선택기법을 일반적인 SVM에 융합한 것으로 대용량의 데이터에서 예측에 불필요한 데이터를 선별적으로 제거하여 예측의 정확도와 속도를 제고할 수 있는 방법이다. 본 연구에서는 잡음이 많고 예측이 어려운 것으로 알려진 재무 데이터를 활용하여 제안 모형의 유용성을 확인하였다.

비대칭 오류비용을 고려한 분류기준값 최적화와 SVM에 기반한 지능형 침입탐지모형 (An Intelligent Intrusion Detection Model Based on Support Vector Machines and the Classification Threshold Optimization for Considering the Asymmetric Error Cost)

  • 이현욱;안현철
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.157-173
    • /
    • 2011
  • 최근 인터넷 사용의 증가에 따라 네트워크에 연결된 시스템에 대한 악의적인 해킹과 침입이 빈번하게 발생하고 있으며, 각종 시스템을 운영하는 정부기관, 관공서, 기업 등에서는 이러한 해킹 및 침입에 의해 치명적인 타격을 입을 수 있는 상황에 놓여 있다. 이에 따라 인가되지 않았거나 비정상적인 활동들을 탐지, 식별하여 적절하게 대응하는 침입탐지 시스템에 대한 관심과 수요가 높아지고 있으며, 침입탐지 시스템의 예측성능을 개선하려는 연구 또한 활발하게 이루어지고 있다. 본 연구 역시 침입탐지 시스템의 예측성능을 개선하기 위한 새로운 지능형 침입탐지모형을 제안한다. 본 연구의 제안모형은 비교적 높은 예측력을 나타내면서 동시에 일반화 능력이 우수한 것으로 알려진 Support Vector Machine(SVM)을 기반으로, 비대칭 오류비용을 고려한 분류기준값 최적화를 함께 반영하여 침입을 효과적으로 차단할 수 있도록 설계되었다. 제안모형의 우수성을 확인하기 위해, 기존 기법인 로지스틱 회귀분석, 의사결정나무, 인공신경망과의 결과를 비교하였으며 그 결과 제안하는 SVM 모형이 다른 기법에 비해 상대적으로 우수한 성과를 보임을 확인할 수 있었다.

하이브리드 인공신경망 모형을 이용한 부도 유형 예측 (Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model)

  • 조남옥;김현정;신경식
    • 지능정보연구
    • /
    • 제21권3호
    • /
    • pp.79-99
    • /
    • 2015
  • 부도 예측은 회계와 재무 분야에서 꾸준히 연구되고 있는 분야이다. 초기에는 주로 다중판별분석(multiple discriminant analysis)와 로짓 분석(logit analysis)과 같은 통계적 방법을 이용하였으나, 1990년대 이후에는 경영 분야의 분류 문제를 위해 많은 연구자들이 인공신경망(back-propagation neural network), 사계기반추론(case-based reasoning), 서포트 벡터 머신(support vector machine) 등과 같은 인공지능을 통한 접근법을 이용하여 통계적 방법보다 분류 성과 측면에서 우수함을 입증해왔다. 기존의 기업의 부도에 관한 연구에서 많은 연구자들이 재무비율을 이용하여 부도 예측 모형을 구축하는 것에 초점을 맞추어왔다. 부도예측에 관한 연구가 꾸준히 진행되고 있는 반면, 부도의 세부적인 유형을 예측하여 제시하는 것에 대한 연구는 미흡한 실정이었다. 따라서 본 연구에서는 수익성, 안정성, 활동성 지표를 중심으로 국내 비외감 건설업 기업들의 부도 여부뿐만 아니라 부도의 세부적인 유형까지 예측 가능한 모형을 개발하고자 한다. 본 연구에서는 부도 유형을 예측하기 위해 두 개의 인공신경망 모형을 결합한 하이브리드 접근법을 제안하였다. 첫 번째 인공신경망 모형은 부도예측을 위한 역전파 인공신경망을 이용한 모형이며, 두 번째 인공신경망 모형은 부도 데이터를 몇 개의 유형으로 분류하는 자기조직화지도(self-organizing map)을 이용한 모형이다. 실험 결과를 통해 정의된 5개의 부도 유형인 심각한 부도(severe bankruptcy), 안정성 부족(lack of stability), 활동성 부족(lack of activity), 수익성 부족(lack of profitability), 회생 가능한 부도(recoverable bankruptcy)는 재무 비율에 따라 유형별로 상이한 특성을 갖는 것을 확인할 수 있었다. 본 연구 결과를 통해 신용 평가 분야의 연구자와 실무자들이 기업의 부도의 유형에 대한 유용한 정보를 얻을 것으로 기대한다.

전통적 IPA(Importance-Performance Analysis)와 수정된 IPA의 비교연구; 순천만 습지를 대상으로 (Comparison between Traditional IPA and Revised IPA; The Suncheon Bay Wetland Reserve)

  • 김보미;이동근
    • 한국조경학회지
    • /
    • 제45권2호
    • /
    • pp.40-50
    • /
    • 2017
  • 수정된 IPA는 전통적 IPA와 비교시 실제 방문객 만족도가 반영된 관리전략을 수립하는데 있어 효과적인 방법이다. 그러나 전통적 IPA와 수정된 IPA의 비교연구는 제한적이다. 그러므로 본 연구에서는 순천만 습지 내 효과적인 관리전략을 구축하기 위해 전통적 IPA와 수정된 IPA를 비교분석하였다. 첫째, 수정된 IPA를 선정하기 위해 선행연구를 고찰하였고, 공간 내 방문객의 실제 만족도에 영향을 받는 관리전략과 서비스 질을 정량화 할 수 있는 적절한 방법으로 Deng(2007) 방법론을 선정하였다. 둘째, 순천만 습지 내 전통적 IPA와 수정된 IPA를 적용한 결과를 비교분석하였다. 셋째, 수정된 IPA의 관리전략과 변화된 관리요소에 관해 논의하였다. 그 결과, 전통적 IPA 결과보다 관리요구도가 더 높게 도출된 관리요소로 혼잡도가 나타났고, 관리요구도가 더 낮게 도출된 관리요소 중 집중관리에서 저우선순위로 관리전략이 변화하는 관리요소의 경우, 그늘목, 전시시설 내부, 프로그램, 가이드투어가 분석됐으며, 현 상태 유지에서 과잉노력지양으로 분석된 관리요소의 경우, 휴게시설, 낙조, 생울타리, 전시시설 외부로 도출되었다. 이는 현재 순천만 습지 내 관리전략과 비교시 전통적 IPA 결과값보다 수정된 IPA의 결과값에 더 부합된 결과로 실제 방문객들의 만족변화에 대해 탄력적인 반응을 보이는 것으로 분석되어졌다. 이를 통해 의사결정자들의 관리전략 구축시 수정된 IPA가 더 정확하고 신뢰성 높은 기초자료로 제공될 수 있을 것으로 기대된다.

빅데이터 기반의 정성 정보를 활용한 부도 예측 모형 구축 (Bankruptcy Prediction Modeling Using Qualitative Information Based on Big Data Analytics)

  • 조남옥;신경식
    • 지능정보연구
    • /
    • 제22권2호
    • /
    • pp.33-56
    • /
    • 2016
  • 대부분의 부도 예측에 관한 연구는 재무 변수를 중심으로 통계적 방법 또는 인공지능 기법을 적용하여 부도 예측 모형을 구축하였다. 그러나 재무비율과 같은 회계 정보를 이용한 부도 예측 모형은 재무 제표 결산 시점과 신용평가 시점 간 시차를 고려하지 않을 뿐만 아니라 해당 산업의 경제적 상황과 같은 외부 환경적인 요소를 반영하기 어렵다는 한계점이 존재하였다. 기업의 부도 여부를 예측하기 위해 정량 정보인 재무 변수만을 이용하는 것에 한계가 있음에도 불구하고 정성 정보를 부도 예측 모형에 반영한 연구는 아직 미흡한 실정이다. 본 연구에서는 재무 변수를 이용하는 기존 부도 예측 모형의 성과를 개선하기 위해 빅데이터 기반의 정성 정보를 추가적인 입력 변수로 활용하는 부도 예측 모형을 제안하였다. 제안 모형의 성과 향상은 정성 정보를 예측 모형에 통합시키기에 적합한 형태로 정보의 유형을 변환시킬 수 있는가에 따라 달려있다. 이에 본 연구에서는 정성 정보 처리를 위한 방법으로 빅데이터 분석 기법 중 하나인 텍스트 마이닝(Text Mining)을 활용하였다. 해당 산업과 관련된 경제 뉴스 데이터로부터 경제 상황에 대한 감성 정보를 추출하기 위해 도메인 중심의 감성 어휘 사전을 구축하고, 구축된 어휘 사전을 기반으로 감성 분석(Sentiment Analysis)을 수행하였다. 형태소 분석 등을 포함한 텍스트 전처리 과정을 거쳐 감성 어휘를 추출하고, 각 어휘에 대한 극성 및 감성 점수를 부여하였다. 분석 결과, 전통적 부도 예측 모형에 경제 뉴스 데이터에서 도출한 정성 정보를 반영하는 것은 모형의 성과를 개선하는 것으로 나타났다. 특히, 경제 상황에 대한 부정적 감정이 기업의 부도 여부를 예측하는 데 더욱 효과적임을 알 수 있었다.

꿀샘식물 아까시나무의 지위지수 도출 및 직경분포 변화 (Development of Diameter Distribution Change and Site Index in a Stand of Robinia pseudoacacia, a Major Honey Plant)

  • 김소라;송정은;박천희;민수희;홍성희;윤준혁;손영모
    • 한국산림과학회지
    • /
    • 제111권2호
    • /
    • pp.311-318
    • /
    • 2022
  • 본 연구는 꿀샘식물인 아까시나무의 적지적수 조림을 위해 판정기준인 지위지수를 도출하고, 도출된 지위지수별 경급별 분포 변화를 알아보기 위하여 수행되었다. 아까시나무 임분의 지위지수를 추정하기 위하여 적용한 모델은 Chapman-Richards식이었다. 도출된 식에 따르면, 우리나라 아까시나무의 지위지수는 기준임령이 30년 일 때 16~22 범위 내에 분포하는 것으로 나타났다. 그리고 지위지수 추정 모델의 적합성은 약 37%정도로 낮았으나, 식의 잔차분포가 한쪽으로 치우지지 않아(bias -0.0030) 활용에는 문제가 없는 것으로 판단된다. 아까시나무 생장에 따른 지위별 직경분포를 구명하기 위해서는 Weibull 직경분포함수를 이용하였다. 직경의 분포를 나타내는 인자로 평균직경과 우세목 수고를 설명변수로 하였으며, 이들은 Weibull 직경분포함수의 모수를 추정하고 복구하는 단계를 거쳤다. 최종적으로는 아까시나무 임분의 평균직경과 우세목 수고로서 직경급별 분포를 나타낼 수 있었으며, 분포 추정에 대한 설명력은 약 80.5%인 것으로 나타났다. 지위지수별 직경분포를 30년생 기준으로 도식화한 결과, 지위지수가 높을수록 직경분포 곡선이 오른쪽으로 이동함을 알 수 있었다. 즉 적지적수를 고려하여 지위지수가 높은 곳에 조림한다면 아까시나무의 생장이 왕성해져 용재생산 뿐만아니라 꿀 생산도 많아질 것임을 유추할 수 있었다. 따라서 본 아까시나무 지위지수분류표와 곡선이 꿀샘식물인 아까시나무를 조성 및 관리함에 있어 의사결정의 기준이 되기를 기대한다.

WUI 산불 소유역에 대한 GIS 기반 침식모형의 적용성 평가 (Applicability evaluation of GIS-based erosion models for post-fire small watershed in the wildland-urban interface)

  • 신승숙;안승효;송진욱;채국석;박상덕
    • 한국수자원학회논문집
    • /
    • 제57권6호
    • /
    • pp.421-435
    • /
    • 2024
  • 2023년 4월에 양강지풍의 영향으로 영동지역에 위치한 강릉에 산불이 발생하였다. 본 연구에서는 강릉 WUI (Wlidland-Urban Interface) 산불 소유역을 대상으로 식생회복에 따른 침식률을 평가하고자, GIS 기반의 RUSLE (Revised Universal Soil Loss Equation)와 SEMMA (Soil Erosion Model for Mountain Areas)를 이용하였다. WUI 화재 소유역은 고도의 범위가 10-30m로 낮으며, 사면의 평균경사는 10.0±7.4°로 준경사면 (general slope)에 해당한다. 토성은 유기물 함량이 높고, 토심이 깊은 양질사토(loamy sand) 이었다. 산불 이후 구곡부(gully)에서 초본층이 왕성하게 재생함에 따라, NDVI (Normalized Difference Vegetation Index)가 최대 0.55에 이르렀다. 침식률 모의 결과 RUSLE은 0.07-94.9 t/ha/storm의 범위이었고, SEMMA는 0.24-83.6 t/ha/storm의 범위를 보였다. RUSLE는 SEMMA보다 평균침식률을 1.19-1.48배 과다 예측하였다. 소나무 화재목이 분포하고, 경사가 급한 중부사면에서 침식률이 크며, 초본층의 회복이 빠른 구곡아래 와지(hollow)에서 상대적으로 낮은 침식률을 보였다. SEMMA는 화재 사면의 NDVI가 0.25(Ic=0.35) 이하인 특정 식생피복에서 급격히 증가하는 침식민감도를 보였다. 유기물 함량이 높고 자연 식생의 회복이 빠른 준경사면은 급경사면에 비해 침식률이 상대적으로 작았다. WUI 산불 지역은 집중호우에 의한 토사재해로 후속적인 물·인적 피해가 예상됨에 따라, 본 연구 결과는 화재 이후 응급대처의 시행을 위한 목표 관리 및 의사 결정의 기초자료로 활용될 것이다.