Geographic Information has been used widely for landuse and management, city plan, and environment and disaster management, etc., But geographic information has been built for individual cases using various methods. Therefore, the discordancy in data, double investment, confusion of use and difficulty of decision supporting system have been occurred. In order to solve these problems, national government is need to framework database. This framework database was enacted for building and use of National Geographic Information System and focused on basic plan of the second national geographic information system. Also, the framework database was selected of eight fields by NGIS laws and 19 detailed items through meeting of framework committee since 2002. In this research, The 19 detailed items( road, railroad, coastline, surveying control point etc.,) of framework database consider a Priority order, In the result of this research, the framework database is obtain to a priority order for building and the national government will carry effectively out a budget for the framework database building. Each of 19 detailed items is grouping into using the priority order of the framework database by AHP analysis method and verified items by decision tree analysis method. The one of the highest priority order items is a road, which is important for building, continuous renovation, and maintain management for use.
원자력발전소 지진 확률론적 안전성 평가인 PSA(Probabilistic Safety Assessment)는 오랜 기간에 걸쳐 확고히 구축되어 왔다. 반면에 다양한 공정 기반의 산업시설물의 경우 화재, 폭발, 확산(유출) 재난에 대해 주로 연구되어 왔으며, 지진에 대해서는 상대적으로 연구가 미미하였다. 하지만, 플랜트 설계 당시와 달리 해당 부지가 지진 영향권에 들어갈 경우 지진 PSA 수행은 필수적이다. 지진 PSA를 수행하기 위해서는 확률론적 지진 재해도 해석(Probabilistic Seismic Hazard Analysis), 사건수목 해석(Event Tree Analysis), 고장수목 해석(Fault Tree Analysis), 취약도 곡선 등을 필요로 한다. 원자력 발전소의 경우 노심 손상 방지라는 최우선 목표에 따라 많은 사고 시나리오 분석을 통해 사건수목이 구축되었지만, 산업시설물의 경우 공정의 다양성과 최우선 손상 방지 핵심설비의 부재로 인해 일반적인 사건수목 구축이 어렵다. 따라서, 본 연구에서는 산업시설물 지진 PSA를 수행하기 위해 고장수목을 바탕으로 확률론적 시각도구인 베이지안 네트워크(Bayesian Network, BN)로 변환하여 리스크를 평가하는 방법을 제안한다. 제안된 방법을 이용하여 임의로 생성된 가스플랜트 Plot Plan에 대해 최종 BN을 구축하고, 다양한 사건 경우에 대한 효용성있는 의사결정과정을 보임으로써 그 우수성을 확인하였다.
Purpose: This descriptive study was done to develop a predictive model of depression in rural elders that will guide prevention and reduction of depression in elders. Methods: A cross-sectional descriptive survey was done using face-to-face private interviews. Participants included in the final analysis were 461 elders (aged${\geq}$ 65 years). The questions were on depression, personal and environmental factors, body functions and structures, activity and participation. Decision tree analysis using the SPSS Modeler 14.1 program was applied to build an optimum and significant predictive model to predict depression in rural elders. Results: From the data analysis, the predictive model for factors related to depression in rural elders presented with 4 pathways. Predictive factors included exercise capacity, self-esteem, farming, social activity, cognitive function, and gender. The accuracy of the model was 83.7%, error rate 16.3%, sensitivity 63.3%, and specificity 93.6%. Conclusion: The results of this study can be used as a theoretical basis for developing a systematic knowledge system for nursing and for developing a protocol that prevents depression in elders living in rural areas, thereby contributing to advanced depression prevention for elders.
Journal of Advanced Marine Engineering and Technology
/
제36권5호
/
pp.662-673
/
2012
This study introduces a condition diagnosis technique for a turbine governor system. The governor system is an important control system to handle turbine speed in a nuclear power plant. The turbine governor system includes turbine valves and stop valves which have their own functions in the system. Because a turbine governor system is operated by high oil pressure, it is very difficult to maintain under stable operating conditions. Turbine valves supply oil pressure to the governor system for proper operation. Using the pressure variation of turbine and governor valves, operating conditions of the turbine governor control system are detected and identified. To achieve automatic detection of valve status, time-based and frequency-based analysis is employed. In this study, a new approach, wavelet decomposition, was used to extract specific features from the pressure signals of the governor and stop valves. The extracted features, which represent the operating conditions of the turbine governor system, include important information to control and diagnose the valves. After extracting the specific features, decision rules were used to classify the valve conditions. The rules were generated by a decision tree algorithm (a typical simple method for data-based rule generation). The results given by the wavelet-based analysis were compared to detection results using time- and frequency-based approaches. Compared with the several related studies, the wavelet transform-based analysis, the proposed in this study has the advantage of easier application without auxiliary features.
The accuracy of knowledge is a major concern for expert system developers and users. Machine learning approaches have recently been found to be useful in knowledge acquisition for expert systems. However, the accuracy of concept acquired from machine learning could not be analyzed in most cases. In this paper we develop a comprehensive knowledge error analysis methodology for practical use of expert systems. Decision tree induction is an important type of machine learning method for business expert systems. Here we start to analyze with knowledge acquired from decision tree induction method, and extend the results to develop error analysis methodology for general machine learning methods. We give several examples and illustrations for these results. We also discuss the applicability of these results to multistrategy learning approaches.
For various historical and technical reasons, the safety of dams has been controlled by an engineering standards-based approach, which has been developed over many years, initially for the design of new dams, but increasingly applied over the past few decades to assess the safety of existing dams. And some countries were asked for risk assessment on existing dam, which included structural, hydraulic safety of dam and social risk. Whereas other countries have developed and adapted as an additional tool to assist in decision-making for dam safety management. Dam risk analysis should need the reliability data of dam failures, the past constructed history and management records of existing dam. It is thought with risk analysis method of dams for structural safety management in domestic that suitable to use consider an event tree, fault tree and conditioning indexes method.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권8호
/
pp.3169-3181
/
2015
Nowadays, online word-of-mouth has become a powerful influencer to marketing and sales in business. Opinion mining and sentiment analysis is frequently adopted at market research and business analytics field for analyzing word-of-mouth content. However, there still remain several challengeable areas for 1) sentiment analysis aiming for Korean word-of-mouth content in film market, 2) availability of machine learning models only using linguistic features, 3) effect of the size of the feature set. This study took a sample of 10,000 movie reviews which had posted extremely negative/positive rating in a movie portal site, and conducted sentiment analysis with four machine learning algorithms: naïve Bayesian, decision tree, neural network, and support vector machines. We found neural network and support vector machine produced better accuracy than naïve Bayesian and decision tree on every size of the feature set. Besides, the performance of them was boosting with increasing of the feature set size.
In this paper we used the KLIPS(Korean Labor and Income Panel tudy) data that surveyed from 2006(wave 9) to 2009(wave 12). Other previous studies are concerned with the panel attrition in the early wave, but this study classifies the response pattern and investigates some factors that influence panel attrition when the panel tends to stabilize. It was revealed that panel attrition was influenced by relocation and housing type through the logit model. Besides it was appeared that panel attrition was affected by the monthly living expenses and the overall household income through the decision tree.
본 연구의 목적은 의사결정트리를 생성하는 생물정보학 프로그램을 개발하고, 이를 갑상선유두암 혈청의 질량분석자료로 시험해 보는 것이다. 대상 및 방법: C4.5를 커스터마이징하여 의사결정트리 분석을 수행할 수 있는 'Protein analysis'라는 프로그램을 개발하였다 61개의 혈청시료(갑상선유두암 27, 자가면역성 갑상선염 17, 대조군 17)를 일정 기간 동안 순차적으로 냉동한 후 실온에서 일시에 해동하여 분석에 사용하였다. 모든 시료는 탈지질화 과정을 거쳐 준비한 후, 2종류의 단백질칩(CM10, IMAC3)에 각각 60개, 50개 시료를 적용하였다. 갑상선유두암의 특징적인 단백질 패턴을 찾기 위해 질량분석기를 이용하여 단백질칩을 분석했다. 'Protein analysis' 프로그램을 이용하여 단백질분포 자료로부터 의사결정트리를 작성하고, 생체표지자 후보물질을 검출하였다. CM10칩에서 발견된 생체표지자 후보물질을 무작위 표본추출 방법을 이용하여 검증하였다. 결과: 단백질분포 자료의 훈련과 검증이 가능한 의사결정트리 프로그램이 개발되었으며, 이 프로그램은 트리 구조와 노드 정보, 트리 구성 과정을 표시하는 3개의 창으로 구성되었다. CM10칩을 이용한 분석에서 총 113개의 단백질 피크 중 23개가 3그룹 간에 유의한 차이가 있었으며, IMAC3는 41개의 단백질 피크 중 8개가 3그룹 간에 유의한 차이가 있었다. 3그룹 분석에서 의사결정트리는 CM10칩과 IMAE3의 단백질분포 자료로부터 각각 60개와 50개의 시료를 높은 정확도로 분류하였으며(오차율 = 각각 3.3%, 2.0%), 각각 4개와 7개의 생체표지자 후보물질을 검출하였다. 암시료와 비암시료를 구분하는 2그룹 분석 에서, 의사결정트리는 모든 암시료를 정확히 구분하였으며(모두 오차율 = 0%), CM10칩을 이용한 분석에서는 단일 노드를 사용하고, IMAC3칩을 이용한 분석에서는 여러 개의 노드를 사용하였다. CM10칩의 단백질 분포자료를 5번의 무작위 추출에 의해 시행한 검증에서 암시료와 비암시료를 구분하는데 높은 정확도를 보였으나(정확도 = 98%, 54/55), 3그룹을 구분할 때는 중등도의 정확도를 보였다(정확도 = 65%, 36/55). 결론: 우리가 개발한 프로그램은 질량분석 자료로부터 성공적으로 의사결정트리를 생성하고, 생체표지자 후보물질을 검출할 수 있었다. 따라서 이 프로그램은 혈청 시료를 이용한 생체표지자 발굴 및 갑상선유두암의 추적관찰에 유용하게 사용될 수 있을 것이다.
온라인 필기 문자 인식 시스템 'SCRIPT(Symbol/Character Recognition In Pen-based Technology)'는 조합 가능한 모든 한글과 영어 대문자, 숫자, 그리고 키보드 부호 등 자연스럽게 필기되는 정자체 문자를 인식하기 위한 알고리듬이다. 필기 문자는 동일인이 쓰더라도 형태의 변화가 다양해서 정보의 불확실성을 지니게 된다. 그런데 기존의 결정 트리(decision tree)를 이용한 특징 분석 방법(feature analysis approach)은 효율적이지만 필기의 변형에 약하여 잘못된 선택을 하기 쉽기 때문에, 이러한 단점을 보완할 수 있는 방법이 필요하다. 이 논문에서는 패턴의 계층적(hierarchical)특성에 맞추어 획 자체의 형태와 획간의 위치 관계를 파악하기 위한 두 단계의 퍼지 결정 트리(fuzzy decision trees)를 사용하여 문자 패턴의 특징을 분석하는 방법을 제안한다. 이러한 방법은 다양한 가능성을 저장함으로써 형태의 변형에 강하고 이전의 잘못된 선택을 수정하기 쉬우며, 특히 하위 후보 패턴들에 의한 상위 패턴의 인식률 상승 효과가 매우 크다. 실헌 결과, 한글은 약 91%의 인식률과 약 0.33초의 인식 속도를 나타냈으며, 영어 및 기타 문자는 약 95%의 인식률과 약 0.08초의 인식 속도를 보였다. 이는 퍼지 결정 트리를 적용하지 않은 겨우에 비하여 인식률이 8~18% 정도 향상된 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.