• 제목/요약/키워드: Decision Tree analysis

검색결과 736건 처리시간 0.033초

기본지리정보 구축 우선순위 평가에 관한 연구 (A Study on Evaluation of the Priority Order about Framework Data Building)

  • 김건수;최윤수;조성길;이상미
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 추계학술발표회 논문집
    • /
    • pp.361-366
    • /
    • 2004
  • Geographic Information has been used widely for landuse and management, city plan, and environment and disaster management, etc., But geographic information has been built for individual cases using various methods. Therefore, the discordancy in data, double investment, confusion of use and difficulty of decision supporting system have been occurred. In order to solve these problems, national government is need to framework database. This framework database was enacted for building and use of National Geographic Information System and focused on basic plan of the second national geographic information system. Also, the framework database was selected of eight fields by NGIS laws and 19 detailed items through meeting of framework committee since 2002. In this research, The 19 detailed items( road, railroad, coastline, surveying control point etc.,) of framework database consider a Priority order, In the result of this research, the framework database is obtain to a priority order for building and the national government will carry effectively out a budget for the framework database building. Each of 19 detailed items is grouping into using the priority order of the framework database by AHP analysis method and verified items by decision tree analysis method. The one of the highest priority order items is a road, which is important for building, continuous renovation, and maintain management for use.

  • PDF

고장수목 기반 베이지안 네트워크를 이용한 가스 플랜트 시스템의 확률론적 안전성 평가 (Probabilistic Safety Assessment of Gas Plant Using Fault Tree-based Bayesian Network)

  • 이세혁;문창욱;박상기;조정래;송준호
    • 한국전산구조공학회논문집
    • /
    • 제36권4호
    • /
    • pp.273-282
    • /
    • 2023
  • 원자력발전소 지진 확률론적 안전성 평가인 PSA(Probabilistic Safety Assessment)는 오랜 기간에 걸쳐 확고히 구축되어 왔다. 반면에 다양한 공정 기반의 산업시설물의 경우 화재, 폭발, 확산(유출) 재난에 대해 주로 연구되어 왔으며, 지진에 대해서는 상대적으로 연구가 미미하였다. 하지만, 플랜트 설계 당시와 달리 해당 부지가 지진 영향권에 들어갈 경우 지진 PSA 수행은 필수적이다. 지진 PSA를 수행하기 위해서는 확률론적 지진 재해도 해석(Probabilistic Seismic Hazard Analysis), 사건수목 해석(Event Tree Analysis), 고장수목 해석(Fault Tree Analysis), 취약도 곡선 등을 필요로 한다. 원자력 발전소의 경우 노심 손상 방지라는 최우선 목표에 따라 많은 사고 시나리오 분석을 통해 사건수목이 구축되었지만, 산업시설물의 경우 공정의 다양성과 최우선 손상 방지 핵심설비의 부재로 인해 일반적인 사건수목 구축이 어렵다. 따라서, 본 연구에서는 산업시설물 지진 PSA를 수행하기 위해 고장수목을 바탕으로 확률론적 시각도구인 베이지안 네트워크(Bayesian Network, BN)로 변환하여 리스크를 평가하는 방법을 제안한다. 제안된 방법을 이용하여 임의로 생성된 가스플랜트 Plot Plan에 대해 최종 BN을 구축하고, 다양한 사건 경우에 대한 효용성있는 의사결정과정을 보임으로써 그 우수성을 확인하였다.

의사결정나무 분석기법을 이용한 농촌거주 노인의 우울예측모형 구축 (A Predictive Model of Depression in Rural Elders-Decision Tree Analysis)

  • 김성은;김선아
    • 대한간호학회지
    • /
    • 제43권3호
    • /
    • pp.442-451
    • /
    • 2013
  • Purpose: This descriptive study was done to develop a predictive model of depression in rural elders that will guide prevention and reduction of depression in elders. Methods: A cross-sectional descriptive survey was done using face-to-face private interviews. Participants included in the final analysis were 461 elders (aged${\geq}$ 65 years). The questions were on depression, personal and environmental factors, body functions and structures, activity and participation. Decision tree analysis using the SPSS Modeler 14.1 program was applied to build an optimum and significant predictive model to predict depression in rural elders. Results: From the data analysis, the predictive model for factors related to depression in rural elders presented with 4 pathways. Predictive factors included exercise capacity, self-esteem, farming, social activity, cognitive function, and gender. The accuracy of the model was 83.7%, error rate 16.3%, sensitivity 63.3%, and specificity 93.6%. Conclusion: The results of this study can be used as a theoretical basis for developing a systematic knowledge system for nursing and for developing a protocol that prevents depression in elders living in rural areas, thereby contributing to advanced depression prevention for elders.

Fault Detection of Governor Systems Using Discrete Wavelet Transform Analysis

  • Kim, Sung-Shin;Bae, Hyeon;Lee, Jae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권5호
    • /
    • pp.662-673
    • /
    • 2012
  • This study introduces a condition diagnosis technique for a turbine governor system. The governor system is an important control system to handle turbine speed in a nuclear power plant. The turbine governor system includes turbine valves and stop valves which have their own functions in the system. Because a turbine governor system is operated by high oil pressure, it is very difficult to maintain under stable operating conditions. Turbine valves supply oil pressure to the governor system for proper operation. Using the pressure variation of turbine and governor valves, operating conditions of the turbine governor control system are detected and identified. To achieve automatic detection of valve status, time-based and frequency-based analysis is employed. In this study, a new approach, wavelet decomposition, was used to extract specific features from the pressure signals of the governor and stop valves. The extracted features, which represent the operating conditions of the turbine governor system, include important information to control and diagnose the valves. After extracting the specific features, decision rules were used to classify the valve conditions. The rules were generated by a decision tree algorithm (a typical simple method for data-based rule generation). The results given by the wavelet-based analysis were compared to detection results using time- and frequency-based approaches. Compared with the several related studies, the wavelet transform-based analysis, the proposed in this study has the advantage of easier application without auxiliary features.

전문가시스템 실용화를 위한 지식오류분석방법론 연구 (A Development of Knowledge Error Analysis Methodology for practical use of Expert Systems)

  • 김현수
    • Asia pacific journal of information systems
    • /
    • 제6권2호
    • /
    • pp.77-105
    • /
    • 1996
  • The accuracy of knowledge is a major concern for expert system developers and users. Machine learning approaches have recently been found to be useful in knowledge acquisition for expert systems. However, the accuracy of concept acquired from machine learning could not be analyzed in most cases. In this paper we develop a comprehensive knowledge error analysis methodology for practical use of expert systems. Decision tree induction is an important type of machine learning method for business expert systems. Here we start to analyze with knowledge acquired from decision tree induction method, and extend the results to develop error analysis methodology for general machine learning methods. We give several examples and illustrations for these results. We also discuss the applicability of these results to multistrategy learning approaches.

  • PDF

의사결정을 위한 콘크리트댐 위험요인 분석 (Risk Factor Analysis of Concrete Dam for Decision Making)

  • 임정열;장봉석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.554-557
    • /
    • 2006
  • For various historical and technical reasons, the safety of dams has been controlled by an engineering standards-based approach, which has been developed over many years, initially for the design of new dams, but increasingly applied over the past few decades to assess the safety of existing dams. And some countries were asked for risk assessment on existing dam, which included structural, hydraulic safety of dam and social risk. Whereas other countries have developed and adapted as an additional tool to assist in decision-making for dam safety management. Dam risk analysis should need the reliability data of dam failures, the past constructed history and management records of existing dam. It is thought with risk analysis method of dams for structural safety management in domestic that suitable to use consider an event tree, fault tree and conditioning indexes method.

  • PDF

Comparing Machine Learning Classifiers for Movie WOM Opinion Mining

  • Kim, Yoosin;Kwon, Do Young;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권8호
    • /
    • pp.3169-3181
    • /
    • 2015
  • Nowadays, online word-of-mouth has become a powerful influencer to marketing and sales in business. Opinion mining and sentiment analysis is frequently adopted at market research and business analytics field for analyzing word-of-mouth content. However, there still remain several challengeable areas for 1) sentiment analysis aiming for Korean word-of-mouth content in film market, 2) availability of machine learning models only using linguistic features, 3) effect of the size of the feature set. This study took a sample of 10,000 movie reviews which had posted extremely negative/positive rating in a movie portal site, and conducted sentiment analysis with four machine learning algorithms: naïve Bayesian, decision tree, neural network, and support vector machines. We found neural network and support vector machine produced better accuracy than naïve Bayesian and decision tree on every size of the feature set. Besides, the performance of them was boosting with increasing of the feature set size.

An Analysis of Response Pattern and Panel Attrition in KLIPS(Korean Labor and Income Panel Study)

  • Nam, Ki-Seong;Chun, Young-Min
    • 응용통계연구
    • /
    • 제25권6호
    • /
    • pp.933-945
    • /
    • 2012
  • In this paper we used the KLIPS(Korean Labor and Income Panel tudy) data that surveyed from 2006(wave 9) to 2009(wave 12). Other previous studies are concerned with the panel attrition in the early wave, but this study classifies the response pattern and investigates some factors that influence panel attrition when the panel tends to stabilize. It was revealed that panel attrition was influenced by relocation and housing type through the logit model. Besides it was appeared that panel attrition was affected by the monthly living expenses and the overall household income through the decision tree.

의사결정트리 프로그램 개발 및 갑상선유두암에서 질량분석법을 이용한 단백질 패턴 분석 (Development of Decision Tree Software and Protein Profiling using Surface Enhanced laser Desorption/lonization - Time of Flight - Mass Spectrometry (SELDI-TOF-MS) in Papillary Thyroid Cancer)

  • 윤준기;이준;안영실;박복남;윤석남
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제41권4호
    • /
    • pp.299-308
    • /
    • 2007
  • 본 연구의 목적은 의사결정트리를 생성하는 생물정보학 프로그램을 개발하고, 이를 갑상선유두암 혈청의 질량분석자료로 시험해 보는 것이다. 대상 및 방법: C4.5를 커스터마이징하여 의사결정트리 분석을 수행할 수 있는 'Protein analysis'라는 프로그램을 개발하였다 61개의 혈청시료(갑상선유두암 27, 자가면역성 갑상선염 17, 대조군 17)를 일정 기간 동안 순차적으로 냉동한 후 실온에서 일시에 해동하여 분석에 사용하였다. 모든 시료는 탈지질화 과정을 거쳐 준비한 후, 2종류의 단백질칩(CM10, IMAC3)에 각각 60개, 50개 시료를 적용하였다. 갑상선유두암의 특징적인 단백질 패턴을 찾기 위해 질량분석기를 이용하여 단백질칩을 분석했다. 'Protein analysis' 프로그램을 이용하여 단백질분포 자료로부터 의사결정트리를 작성하고, 생체표지자 후보물질을 검출하였다. CM10칩에서 발견된 생체표지자 후보물질을 무작위 표본추출 방법을 이용하여 검증하였다. 결과: 단백질분포 자료의 훈련과 검증이 가능한 의사결정트리 프로그램이 개발되었으며, 이 프로그램은 트리 구조와 노드 정보, 트리 구성 과정을 표시하는 3개의 창으로 구성되었다. CM10칩을 이용한 분석에서 총 113개의 단백질 피크 중 23개가 3그룹 간에 유의한 차이가 있었으며, IMAC3는 41개의 단백질 피크 중 8개가 3그룹 간에 유의한 차이가 있었다. 3그룹 분석에서 의사결정트리는 CM10칩과 IMAE3의 단백질분포 자료로부터 각각 60개와 50개의 시료를 높은 정확도로 분류하였으며(오차율 = 각각 3.3%, 2.0%), 각각 4개와 7개의 생체표지자 후보물질을 검출하였다. 암시료와 비암시료를 구분하는 2그룹 분석 에서, 의사결정트리는 모든 암시료를 정확히 구분하였으며(모두 오차율 = 0%), CM10칩을 이용한 분석에서는 단일 노드를 사용하고, IMAC3칩을 이용한 분석에서는 여러 개의 노드를 사용하였다. CM10칩의 단백질 분포자료를 5번의 무작위 추출에 의해 시행한 검증에서 암시료와 비암시료를 구분하는데 높은 정확도를 보였으나(정확도 = 98%, 54/55), 3그룹을 구분할 때는 중등도의 정확도를 보였다(정확도 = 65%, 36/55). 결론: 우리가 개발한 프로그램은 질량분석 자료로부터 성공적으로 의사결정트리를 생성하고, 생체표지자 후보물질을 검출할 수 있었다. 따라서 이 프로그램은 혈청 시료를 이용한 생체표지자 발굴 및 갑상선유두암의 추적관찰에 유용하게 사용될 수 있을 것이다.

퍼지 결정 트리를 이용한 온라인 필기 문자의 계층적 인식 (An Application of Fuzzy Decision Trees for Hierarchical Recognition of Handwriting Symbols)

  • 전병환;김성훈;김재희
    • 전자공학회논문지B
    • /
    • 제31B권3호
    • /
    • pp.132-140
    • /
    • 1994
  • 온라인 필기 문자 인식 시스템 'SCRIPT(Symbol/Character Recognition In Pen-based Technology)'는 조합 가능한 모든 한글과 영어 대문자, 숫자, 그리고 키보드 부호 등 자연스럽게 필기되는 정자체 문자를 인식하기 위한 알고리듬이다. 필기 문자는 동일인이 쓰더라도 형태의 변화가 다양해서 정보의 불확실성을 지니게 된다. 그런데 기존의 결정 트리(decision tree)를 이용한 특징 분석 방법(feature analysis approach)은 효율적이지만 필기의 변형에 약하여 잘못된 선택을 하기 쉽기 때문에, 이러한 단점을 보완할 수 있는 방법이 필요하다. 이 논문에서는 패턴의 계층적(hierarchical)특성에 맞추어 획 자체의 형태와 획간의 위치 관계를 파악하기 위한 두 단계의 퍼지 결정 트리(fuzzy decision trees)를 사용하여 문자 패턴의 특징을 분석하는 방법을 제안한다. 이러한 방법은 다양한 가능성을 저장함으로써 형태의 변형에 강하고 이전의 잘못된 선택을 수정하기 쉬우며, 특히 하위 후보 패턴들에 의한 상위 패턴의 인식률 상승 효과가 매우 크다. 실헌 결과, 한글은 약 91%의 인식률과 약 0.33초의 인식 속도를 나타냈으며, 영어 및 기타 문자는 약 95%의 인식률과 약 0.08초의 인식 속도를 보였다. 이는 퍼지 결정 트리를 적용하지 않은 겨우에 비하여 인식률이 8~18% 정도 향상된 것이다.

  • PDF