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Abstract: This study introduces a condition diagnosis technique for a turbine governor system. The 
governor system is an important control system to handle turbine speed in a nuclear power plant. The 
turbine governor system includes turbine valves and stop valves which have their own functions in the 
system. Because a turbine governor system is operated by high oil pressure, it is very difficult to maintain
under stable operating conditions. Turbine valves supply oil pressure to the governor system for proper 
operation. Using the pressure variation of turbine and governor valves, operating conditions of the turbine
governor control system are detected and identified. To achieve automatic detection of valve status, 
time-based and frequency-based analysis is employed. In this study, a new approach, wavelet 
decomposition, was used to extract specific features from the pressure signals of the governor and stop 
valves. The extracted features, which represent the operating conditions of the turbine governor system, 
include important information to control and diagnose the valves. After extracting the specific features, 
decision rules were used to classify the valve conditions. The rules were generated by a decision tree 
algorithm (a typical simple method for data-based rule generation). The results given by the wavelet-based
analysis were compared to detection results using time- and frequency-based approaches. Compared with the
several related studies, the wavelet transform-based analysis, the proposed in this study has the advantage 
of easier application without auxiliary features. 
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1. Introduction 
Nuclear power generation was introduced in the 

mid-1950s and has been continuously expanded. 
Recently, 440 nuclear power plants produce 16% of 
the total electric power production in the world [1]. 
However, nuclear power generation is a large-scale 
and complex system which must be stably operated. 
Particularly, when important functional devices fail, 
a fault can be derivatively enlarged to a serious 
accident; that is, a radiation accident. Therefore, 
condition diagnosis and management should be 
precisely achieved for stable operation of the plant. 

In this study, the turbine valve system, one of 
the core systems in a nuclear power plant is the 
target system. It is difficult to gather data from the 
operating system of a turbine valve because it is a 
mechanically controlled analog device and it is 
difficult to predict the performance of the valve 
because it has strong non-linearity. Oil leaking can 
occur at several parts in the system, so condition 
diagnosis and maintenance is complicated. For 
example, from 2001 to the end of 2005, in the K 
nuclear power plant, the turbine operating systems 
failed 30 times and it was difficult to analyze and 
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to find some of the fault causes [2-4].
According to our survey, the NPPC (national 

pollution prevention center) was developed at the 
Georgia Institute of Technology. The developed 
system is a type of expert systems that supports the 
operator of a nuclear power plant to find the cause 
of abnormal failure by applying a system operating 
model and relative rules [5]. EG&G Idaho 
Company designed a rule-based expert system that 
inspects measuring instruments and diagnoses the 
nuclear reactors in order to check reaction 
conditions [6]. Diagnosis systems for a nuclear 
power plant have recently been developed using 
neural networks and fuzzy logic. However, 
researches related to governor valves are not yet 
adequate.

In this study, a decision support system was 
developed to diagnose the governor operating 
system based on inspecting the pressure variation of 
the turbine valves. However, it is not easy to 
diagnose and analyze the operating systems 
automatically in the field, so time-series data 
mining based on a wavelet transform was applied 
to extract features for condition diagnosis. In this 
study, four-scale wavelet decomposition was 
performed to find the proper features from the 
pressure signals. After feature extraction, a decision 
tree algorithm was used to develop identification 
rules. Valve conditions were correctly classified by 
decision rules. Previous diagnosis results via fuzzy 
logic and Fourier transforms that were achieved in 
our prior research were also useful to diagnose 
valve status [7]. 

In this manuscript, Section 2 gives a description 
of the turbine operating systems of nuclear power 
plant, Section 3 summarizes several related studies, 
and Section 4 explains the diagnosis information 
and pressure signals of the valves. Section 5 
introduces our proposal for condition diagnosis 
using wavelet transforms. Conclusions are given in 

Section 6.

2. Turbine Governor System
2.1 Operating Systems in the Physical Plant

The governor system has an important role in 
controlling the revolution speed of the turbine 
blade. However, it is necessary to inspect the 
system on an ongoing basis and to maintain it in 
good operating condition, because the system uses 
oil pressure to operate. Oil pressure-based systems 
are often faced with the problem of oil leakage, but 
until now, most of the systems have been 
maintained by hand. This operating situation causes 
difficulty of automatic system maintenance. Figure 
1 shows a monitoring window of the power 
governing valve in the nuclear power plant. In the 
window, the dotted lines indicate the high pressure 
stop valve and the governor valve. The both turbine 
valves (stop valve and governor valve) include oil 
supplying and operating devices for valve operating. 
The turbine valves are opened by a hydraulic 
servo-cylinder and are closed by a compressed 
spring [8-9]. 

2.1.2. Characteristics of the Turbine Governor
At starting up, a governor valve of the turbine 

system controls the velocity of a moving fluid to 
the reference speed. After the transient state, the 
governor valve controls the speed to 1800 rpm 
using 16 valves of 4 groups, as shown in Fig. 1. 
The high pressure turbine valve, which handles 
about 80% of the fluid, must be able to obtain a 
response from the control command and limit the 
variation of the valve opening to less than 0.5%. 

Oil pressure can be changed according to the 
conditions of the governor and stop valves. Pressure 
is cyclically controlled and an internal leak 
continuously occurs in the driving system because 
of the mechanical characteristics of the system. 
This pressure variation affects control performance 
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Governor and stop valve

Figure 1: The hydraulic lines of turbine valve driver.

of the valves and can cause a system malfunction. 
Figure 2 shows the pressure signal of the valve. 
The slope of the unloading time is strongly related 
to the condition of the valve, so unloading times 
are used for valve condition diagnosis in this study. 
The loading time is the time interval between the 
pressing point and the set point (pressurization). 
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Figure 2: A normal pressure variation of the 
operating cycling of a governor valve.

The unloading time is the time interval between 
the peak point and the valley point (compression). 
The time interval contains important information for 
valve control. Field operators check the value, and 

evaluate the valve status for maintenance 
requirements. 

3. Related Works
Many subsequent papers extended this approach 

to handle scaling and gaps [10], subsequence 
matching using minimum bounding rectangles 
[11-12], formalizing query constraints and 
incorporating them into the indexing procedure 
[13-14], using the last k DFT coefficients with the 
conjugate property of the DFT [15], and using Haar 
DWT instead of DFT [16]. The competition 
between DFT and Haar DWT was resolved in [17], 
concluding that they are comparable in energy 
preservation, but that DWT is faster to calculate 
and offers multi-resolution decomposition. In 
addition, there are approaches to combine DWT 
with time warping [18].

Popivanov et al. [19] pursued the suggestion by 
Chan [16] that wavelet bases other than Haar, 
might be better for certain data sets. They showed 
that the contraction property needed for indexing 
holds for all (bi-)orthogonal wavelet transforms, 
making a large family of transforms available for 
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the feature extraction. In particular the Daubechies 
wavelet family [20] was shown to have better 
energy preservation on several real life and 
synthetic data-sets. 

One possibility to search for groups in a set of 
time series is clustering. The approximate distance 
functions from the indexing literature and other 
sophisticated distance functions have been combined 
with clustering algorithms- for example, k-Means 
clustering [21-22] (with ARIMA based distance), 
and [23] (with DWT); hierarchical clustering [24] 
(with Euclidean distance) and [25] (with dynamic 
time warping distance); or SOM clustering [26] 
(with perceptually important point distance). 

4. Diagnosis Information from Pressure 

Signals of the Valves
4.1 Operating Conditions of the Valves

The hydraulic pressure of the governor valves 
should be from 100 to 110 ㎏/㎠ to handle the 
driving system, and it must be higher than 80 kg/
㎠ under any circumstance. If pressure variation 
increases, internal leaking of the cylinder and valve 
swing can occur. If the pressure is lower than 80 
㎏/㎠, the spring tension of the inner cylinder can 
be overcome, and the valve can be closed 
regardless of the control commend. Thus, it is best 
to shorten loading time and to lengthen unloading 
time for the optimal operating condition.

Under the normal operating condition of 55~60% 
of valve opening and 100~115 ㎏/㎠ of pressure, if 
the dump solenoid coil is cut off, oil pressure will 
rapidly decrease due to loss of the power supply, 
and the valve will quickly closed. The major faults 
causing this phenomenon are coil defect, stop 
interlocking driving, and inner faults of the solenoid 
driver. Close interlocking is promptly closed after 4 
s when 20% of the deviation compared with the 
reference value occurs. This fault can occur based 
on motor stop. Tables 1 and 2 show the standard 

values of the time and pressure. The valves can be 
completely operated under the normal pressure and 
loading time within the standard ranges. This 
phenomenon can be represented by the slope of the 
pressure signals; therefore, the fault or abnormal 
conditions of the valves can be detected and 
diagnosed by the slope patterns. The relation 
between slope and operating condition is applied as 
a diagnosis feature in valve management. For 
example, when transforming time-based signals 
using Fourier or wavelet transforms, inflection and 
specific points of the pressure signals can be 
converted to frequency-based signals. These values 
are used as specific features for checking valve 
conditions.

In practical terms, field operators usually 
diagnose a leak condition and other defects using 
the slope of the loading time. In this study, we 
developed an automatic diagnosis algorithm that 
extracts features from data based on field 
information.

Table 1: Standard values for the operation pressure 
of the stop and governor valve.

Variable Valve type Normal value 
(㎏/㎠)

Bottom pressure
Stop valve 123~127

Governor valve 96~102

Upper pressure Stop valve 134~140
Governor valve 107~113

Table 2: Standard values for the operation loading 
time of the stop and governor valve.

Variable Valve type Normal value (s)

Loading time
Stop valve Under 6

Governor valve Under 6

Unloading time
Stop valve Over 152

Governor valve Over 15

4.2 Signals for Valve Diagnosis

The goal of the diagnosis system proposed in 
this study is to classify the valve conditions using 
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four levels: best, adequate, marginal, and worst. 
Conditions of the valves are assessed using valve 
pressure based on the operating information 
discussed previously. Pressure magnitudes and 
patterns of each valve indicate the status of the 
valves. Pressure signals are generally used in the 
actual fields. Field operators can empirically make 
a decision regarding the valve condition using the 
pressure signals. 

Figure 3 shows the pressure signals of the stop 
and the governor valves based on valve condition. 
One point signal is measured by 0.5 s, and the 
whole signal is measured for about two h, so 
14,000 points are gathered for one set. 2500 data 
points among the whole signals are resampled by a 

(a) Pressure variation of the stop valves

(b) Pressure variation of the governor valves 
Figure 3: Pressure values of the HP turbine valves.

sampling window, and are applied for diagnosis. 
The stop valve has a small leakage in the 
following order: SV3 (best), SV4, SV2, and SV1 
(worst). In addition, the governor valve has a small 
leakage in the following order: GV1 (best), GV4, 
GV2, and GV3 (worst). As shown in Fig. 3, the 
pressure value of each valve is significantly 
different with respect to valve performance. SV and 
GV are abbreviation of the stop valve and the 
governor valve, respectively. If the maximum 
pressure value increases, the performance of the 
valve improves. That is, the amplitude of the 
pressure signal has an opposite relation to the 
amount of leakage by the valves. Inclining and 
declining slopes of the signal have specific features 
representing valve performance (namely, the degree 
of slope is related to the amount leakage in the 
valves), and therefore the pressure signals can be 
used as a powerful diagnosis tool. 

5. Condition Diagnosis Using the 

Wavelet Transform Method
It is difficult to diagnose the status of the 

governor valves using only Fourier transform 
analysis, so three features from the Fourier 
transform and one feature from the original signal 
(amplitude) were used to compensate for the weak 
point of the Fourier transform. In this case, two 
types of features were applied, which can be 
complicated. Also, signal errors can occur when the 
maximum variation is calculated from maximum 
and minimum points, because of noise in the 
signals. To solve this problem, an alternative 
algorithm is proposed based on wavelet transform 
analysis. 

The wavelet transform can convert the original 
signal to a multi scale signal and energy values 
calculated from detail coefficients of each scale can 
be the specific features. In particular, 
multiresolution analysis of the wavelet transform 
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can provide an index (summation index: S-Index) 
that is calculated by summation of the energy 
values of the detail coefficients. The S-index can 
be used for diagnosis of the valves without a long 
test time. The performance of newly - installed 
valves can be compared to a ranking list, and they 
can be ranked based on a condition list.

5.1 Signal Preprocessing Using Z-Score Standardization

Control commands can cyclically compress and 
decompress the high pressure valves within a 
certain interval, but variation of the pressure 
between maximum and minimum values differs 
according to valve’s conditions. On the other 
words, the peak (maximum charging point) and 
valley (minimum leaking point) values are 
determined by the valve’s status. However, the 
different amplitudes of the pressure signals from 
each valve can cause inaccurate results in feature 
extraction from the detail coefficients. In this study, 
the peak and slant patterns are employed in 
information extraction.

To remove the influence of pressure amplitude, 
the signals were standardized, and power values 
were calculated by normal distribution with zero 
mean and one standard deviation. Standardization 
was performed on the pressure signals before 
conducting the wavelet transform using Z-score 
standardization [27]. Z-score standardization, which 
is widely used in statistical analysis, is described 
by 

( )
( )

* X mean X
X

SD X
−

=
                       (1)

where X are the measured values, and SD is the 
standard deviation of X.

5.2 Feature Extraction for Status Detection Using 

Wavelet Transform

Wavelet decomposition was used for feature 
extraction from pressure signals of the valves as 

shown in Figure 4 and 6. The pressure signals 
were transformed to four scaled signals, and the 
power values were calculated using the detail 
coefficients of the four scales. Figures 5 and 7 
show the power values calculated using the power 
spectrum equation. The detail coefficients are a part 
of the high frequency of the signals, and the power 
values of the high frequency signals include the 
specific features. In particular, the valve pressure 
applied in this study was charged and leaked 
periodically, so the upper and lower vertices have 
the high frequency components. The energy values 
of the detail coefficients of each level can quantify 
information regarding the charging and leaking 
number repeated during the period that represents 
the valve characteristics. Also, the patterns of the 
inclining and declining slopes of the pressure 
signals can be included in the detail coefficients; 
thus, the valve’s performance can be diagnosed by 
the power values.

In this application, the Coiflet function was used 
for the mother wavelet function. The Haar, Coif1, 
and Coif4 function [28] were applied and evaluated 
to compare performance, and the Coiflet function 
was selected after conducting several repeated trials. 
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Figure 4: 4-scales multiresolution for stop valves.
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Two thousand sampling data points were 
extracted by the window, and the re-sampled 
signals were transformed for diagnosis. Energy 
values were calculated by the general spectrum 
equation. Finally, as shown in Figure 4 and Figure 
6, we determined that the Coif1 function had the 
best performance in correctly classifying the valve 
condition. Also, considering Figures, the energy 
values of level 3 and level 4, and the sum of the 
energy values can be selected as the features in the 
next condition classification.
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Figure 5: 4-scales multiresolution for stop valves.
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Figure 6: 4-scales multiresolution for stop valves.
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Figure 7: 4-scales multiresolution for stop valves.

5.2.1 Results of Features Extraction 
Condition diagnosis of both valves was 

accomplished using the seven sampling sets that 
were measured from the field after repairing the 
stop valves. The data sets used in wavelet analysis 
for this study are different than the data sets used 
in the previous research [7]. Tables 3 and 4 show 
the power values of the detail coefficients that were 
transformed by wavelet decomposition. As shown in 
the tables, the power values of level 3 and level 4 
have the significant patterns corresponding to the 
valve conditions; therefore, both values can be used 
for effective fault identification and also summation 
values of the power values called S-Index can 
represent the feature of the performance. On the 
other words, the energy values of the detail 
coefficients of each scale level can show significant 
features of each valve. In this study, diagnosis rules 
were extracted using the energy values of the 3rd 
and 4th scale levels and the S-Index values; that is, 
two sets of rule-based diagnosis systems were 
designed and compared according to classification 
performance. As shown in the results, the energy 
values of the details decomposed by wavelet 
transform indicate the status of the valves, and 
whether the valves are good or not. As mentioned 
previously, the applied signals used in this 
diagnosis are different because this diagnosis was 
performed using valve pressures after repair of the 
valves during one month. However, the diagnosis 
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results of the governor valves through FFT or 
wavelet analysis are the same even though different 
pressure signals are applied, because the governor 
valves were not fixed during the overall period. In 
the FFT analysis (before repairing), the status of 
the stop valves is in the following order: SV3, 
SV4, SV2, and SV1. However, in the wavelet 

Table 3: Results of feature extraction from stop 
valves using wavelet decomposition.
(a) Power of the detail coefficients of stop valve1

Details Stop Valve1: Seven Test Samples Avg
1 2 3 4 5 6 7

Level1 0 0 0 0 0 0 0 0
Level2 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002
Level3 0.0041 0.0041 0.0041 0.0041 0.0041 0.0042 0.0043 0.0041 
Level4 0.0573 0.0567 0.0576 0.0589 0.0572 0.0564 0.0574 0.0574 
SUM 0.0616 0.061 0.0619 0.0632 0.0615 0.0608 0.0619 0.0617

(b) Power of the detail coefficients of stop valve2

Details
Stop Valve2: Seven Test Samples

Avg1 2 3 4 5 6 7
Level1 0 0 0 0 0 0 0 0
Level2 0 0 0 0 0 0 0 0
Level3 0.0013 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 
Level4 0.0269 0.027 0.0263 0.0259 0.0263 0.0269 0.0267 0.0266 
SUM 0.0282 0.0284 0.0277 0.0273 0.0277 0.0283 0.0281 0.0280 

Details
Stop Valve3: Seven Test Samples

Avg1 2 3 4 5 6 7
Level1 0 0 0 0 0 0 0 0
Level2 0 0 0 0 0 0 0 0
Level3 0.001 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 
Level4 0.0191 0.0193 0.0181 0.018 0.0191 0.0187 0.0185 0.0187 
SUM 0.0201 0.0204 0.0192 0.0191 0.0202 0.0198 0.0196 0.0198 

(c) Power of the detail coefficients of stop valve3

Details
Stop Valve4: Seven Test Samples

Avg1 2 3 4 5 6 7
Level1 0 0 0 0 0 0 0 0
Level2 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Level3 0.0019 0.0019 0.0018 0.0018 0.0018 0.0019 0.0019 0.0019 
Level4 0.0287 0.0286 0.0284 0.0277 0.0276 0.0282 0.0279 0.0282 
SUM 0.0307 0.0306 0.0303 0.0296 0.0295 0.0302 0.0299 0.0301 

(d) Power of the detail coefficients of stop valve4

analysis (after repairing), the status of the stop 
valves changed to the following order: SV3, SV2, 
SV4, and SV1. This is because stop valve SV2 was 
repaired during the overall period to decrease 
leakage of the pressure. As shown in Figure 8, the 
pressure leakage of stop valve 2 was reduced and 
the maximum pressure increased to 136 kg/cm2. 
From the results, the changed conditions of the 
valves can be detected and diagnosed by the 
applied algorithm without retraining the diagnosis 
algorithm. Therefore the proposed system can be 
employed in the field for nuclear plant diagnosis. 

(a) Before repairing (3>4>2>1)

(b) After repairing during overall periods (3>2>4>1)
Figure 8: 4-scales multiresolution for stop valves.
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Details
Governor Valve1: Seven Test Samples

Avg
1 2 3 4 5 6 7

Level1 0 0 0 0 0 0 0 0
Level2 0 0 0 0 0 0 0 0
Level3 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 
Level4 0.0042 0.0037 0.0036 0.0041 0.0029 0.0016 0.0027 0.0033 
SUM 0.0052 0.0038 0.0037 0.0042 0.003 0.0017 0.0028 0.0035 

Table 4: Results of feature extraction from governor 
valve signal.
(a) Power of the detail coefficients of governor valve1

Details
Governor Valve2: Seven Test Samples

Avg
1 2 3 4 5 6 7

Level1 0 0 0 0 0 0 0 0
Level2 0 0 0 0 0 0 0 0
Level3 0.0005 0.0005 0.0005 0.0006 0.0006 0.0006 0.0005 0.0005 
Level4 0.0127 0.0128 0.0123 0.0113 0.0114 0.0107 0.0108 0.0117 
SUM 0.0132 0.0133 0.0128 0.0119 0.012 0.0113 0.0113 0.0123 

(b) Power of the detail coefficients of governor valve2

Details
Governor Valve3: Seven Test Samples

Avg
1 2 3 4 5 6 7

Level1 0 0 0 0 0 0 0 0
Level2 0 0 0 0 0 0 0 0
Level3 0.006 0.0006 0.0006 0.0006 0.0006 0.0006 0.0007 0.0014 
Level4 0.0135 0.0136 0.014 0.0135 0.0133 0.0133 0.0134 0.0135 
SUM 0.0195 0.0142 0.0146 0.0141 0.0139 0.0139 0.0141 0.0149 

(c) Power of the detail coefficients of governor valve3

Details
Governor Valve4: Seven Test Samples

Avg
1 2 3 4 5 6 7

Level1 0 0 0 0 0 0 0 0
Level2 0 0 0 0 0 0 0 0
Level3 0.0004 0.0003 0.0004 0.0005 0.0005 0.0004 0.0005 0.0004 
Level4 0.0083 0.0095 0.0103 0.0083 0.0076 0.0079 0.0086 0.0086 
SUM 0.0087 0.0098 0.0107 0.0088 0.0081 0.0083 0.0091 0.0091 

(d) Power of the detail coefficients of governor valve4

5.3 Rule Generation for Condition Diagnosis Based on 

Decision Tree

The features extracted by wavelet decomposition 

were classified using diagnosis rules. Energy values 
of the four levels and the S-index, a total of five 
inputs, were used for rule extraction using the 
decision tree algorithm. The decision tree is a map 
of the reasoning process, so it can be used to 
explain why a question is being asked. The 
decision tree algorithm was applied to generate 
classification rules for the valve conditions. The 
following decision tree assumes that questions are 
answered with a certain yes or no. A tree that 
allows answering with a partial yes or no would 
have a much larger number of end nodes. In 
practical problems, the intuition of a human expert, 
or expert system software, is necessary to determine 
the likely end node. Each end node represents a 
situation with known effective and efficient 
leadership styles. Entropy and gain are used to 
extend branches of trees.
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5.3.1 Results of Condition Diagnosis 
Table 5 shows the results of the condition 

diagnosis using the wavelet-based features and 
decision tree. Seven sampling data sets were 
applied. Among the whole data sets, four data sets 
were used for training and three sets were used for 
validation using the developed tree model. The four 
energy values (from level 1 to level 4) obtained 
using wavelet decomposition and the sum of the 
four level energy values were employed as inputs 
to the model. As shown in Figures 4 and 6, the 
sum values were quite different between the valve 
statuses. The signals used in this study have 
significant information to diagnose the valve 
conditions, so there is no error in the training and 
testing results. In comparing the results, it was 
assumed that level 3 and level 4 values had a 
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 Governor valve:   100% accuracy Stop valve: 100%   accuracy

Training
16 sets

(a) (b) (c) (d) Classified as (a) (b) (c) (d) Classified as
4    (a): class GV1 4    (a): class GV1

4   (b): class GV1  4   (b): class GV1
  4  (c): class GV1   4  (c): class GV1
   4 (d): class GV1    4 (d): class GV1

Testing
12 sets

(a) (b) (c) (d) Classified as (a) (b) (c) (d) Classified as
3    (a): class GV1 3    (a): class GV1
 3   (b): class GV1  3   (b): class GV1
  3  (c): class GV1   3  (c): class GV1
   3 (d): class GV1    3 (d): class GV1

Rules

1: If level4 ≤ 0.0103 and level3 ≤ 
0.0001, then the class is GV1
2: If level4 ≥ 0.0108 and level4 ≤ 
0.0127, then the class is GV2
3: If level4 >   0.0133, then the class is 
GV3
4: If level4 ≤ 0.0103 and level3 ≥ 
0.0004, then the class is GV4

1: If level2 > 0.0002, then the class is SV1
2: IF level2 ≤ 0 and sum > 0.0277, then the 
class is SV2
3: IF level 2 ≤ 0 and sum £ 0.0202, then the 
class is SV3
4: IF level2 ≥ 0.0001 and level2 ≤ 0.0001, 
then the class is SV4

Table 5: Results of condition diagnosis and generated rules.

greater effect on the diagnosis performance of the 
governor valves, because the diagnosis rules were 
generated by using both values. However, in the 
stop valve results, level 2 and sum values were 
selected for rule generation. The selected variables 
mean that the pressure signals associated with the 
status have their own features at the specific 
frequency. The value of level 1 shows the highest 
frequency and the value of level 4 indicates the 
lowest frequency in this study.

By using the extracted rules, condition diagnosis 
of the governor and stop valves was accomplished. 
The performance of this algorithm using wavelet 
transform was similar to the previous approaches 
such as fuzzy logic- and Fourier transform-based 
analysis. However, in the fuzzy logic-based 
analysis, it is not easy to extract the inference rules 
without expert’s knowledge. In particular, it is quite 
difficult to generate the inference rules with too 
many inputs. In Fourier transform-based  analysis, 
the conditions were not diagnosed using Fourier 

transform alone, so one auxiliary feature 
(amplitude) extracted from the raw signal was used 
together. The Fourier transform approach is very 
useful in analyzing high frequency signals, but the 
pressure signals used in this study did not have 
many high frequency elements. In comparing the 
results between the previous approaches and the 
proposed approach, wavelet transform-based analysis 
was easy to apply because there is no inference 
rule, and the status can be clearly diagnosed using 
only the proposed approach. 

6. Conclusions 
This study deals with the condition diagnosis of 

the turbine valves in the K nuclear power plant. 
The control valves in the high pressure turbine 
consist of the four stop valves and the four 
governor valves that are operated by oil pressure. 
Information gathering from the valves is limited, so 
pressure variation of the oil pressure system can be 
just monitored. Therefore, aging conditions and 
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faults of the valves inside can be analyzed and 
diagnosed using pressure information. In this study, 
wavelet transform for signal transform of the 
pressure signals were applied to design the 
condition diagnosis system for the valves. The 
wavelet analysis is the easier method than the FFT 
analysis because feature extraction is achieved 
easily. It was a major advantage for the wavelet 
based condition diagnosis. Energy values of wavelet 
decomposition were employed as features in the 
proposed study. 

After feature extraction based on wavelet 
transform, the decision tree algorithm was applied 
to extract the rules for status classification. The 
diagnosis results using wavelet transform were 
compared with those using fuzzy logic and Fourier 
transform. In the comparison of the results, it 
ensures that wavelet transform-based condition 
diagnosis for the stop valve and the governor valve 
is effectively achieved. In special, performance 
variation of the valves operated under the changed 
valve condition was immediately detected by the 
designed diagnosis algorithm. Therefore leakage of 
the valve oil pressure system can be reduced 
without physical experiments and performance 
analysis. 
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