• Title/Summary/Keyword: Decision Tree Regression

Search Result 328, Processing Time 0.022 seconds

Development of Prediction Model of Chloride Diffusion Coefficient using Machine Learning (기계학습을 이용한 염화물 확산계수 예측모델 개발)

  • Kim, Hyun-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.87-94
    • /
    • 2023
  • Chloride is one of the most common threats to reinforced concrete (RC) durability. Alkaline environment of concrete makes a passive layer on the surface of reinforcement bars that prevents the bar from corrosion. However, when the chloride concentration amount at the reinforcement bar reaches a certain level, deterioration of the passive protection layer occurs, causing corrosion and ultimately reducing the structure's safety and durability. Therefore, understanding the chloride diffusion and its prediction are important to evaluate the safety and durability of RC structure. In this study, the chloride diffusion coefficient is predicted by machine learning techniques. Various machine learning techniques such as multiple linear regression, decision tree, random forest, support vector machine, artificial neural networks, extreme gradient boosting annd k-nearest neighbor were used and accuracy of there models were compared. In order to evaluate the accuracy, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE) and coefficient of determination (R2) were used as prediction performance indices. The k-fold cross-validation procedure was used to estimate the performance of machine learning models when making predictions on data not used during training. Grid search was applied to hyperparameter optimization. It has been shown from numerical simulation that ensemble learning methods such as random forest and extreme gradient boosting successfully predicted the chloride diffusion coefficient and artificial neural networks also provided accurate result.

Ensemble Deep Learning Model using Random Forest for Patient Shock Detection

  • Minsu Jeong;Namhwa Lee;Byuk Sung Ko;Inwhee Joe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1080-1099
    • /
    • 2023
  • Digital healthcare combined with telemedicine services in the form of convergence with digital technology and AI is developing rapidly. Digital healthcare research is being conducted on many conditions including shock. However, the causes of shock are diverse, and the treatment is very complicated, requiring a high level of medical knowledge. In this paper, we propose a shock detection method based on the correlation between shock and data extracted from hemodynamic monitoring equipment. From the various parameters expressed by this equipment, four parameters closely related to patient shock were used as the input data for a machine learning model in order to detect the shock. Using the four parameters as input data, that is, feature values, a random forest-based ensemble machine learning model was constructed. The value of the mean arterial pressure was used as the correct answer value, the so called label value, to detect the patient's shock state. The performance was then compared with the decision tree and logistic regression model using a confusion matrix. The average accuracy of the random forest model was 92.80%, which shows superior performance compared to other models. We look forward to our work playing a role in helping medical staff by making recommendations for the diagnosis and treatment of complex and difficult cases of shock.

Hyperparameter Tuning Based Machine Learning classifier for Breast Cancer Prediction

  • Md. Mijanur Rahman;Asikur Rahman Raju;Sumiea Akter Pinky;Swarnali Akter
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.196-202
    • /
    • 2024
  • Currently, the second most devastating form of cancer in people, particularly in women, is Breast Cancer (BC). In the healthcare industry, Machine Learning (ML) is commonly employed in fatal disease prediction. Due to breast cancer's favorable prognosis at an early stage, a model is created to utilize the Dataset on Wisconsin Diagnostic Breast Cancer (WDBC). Conversely, this model's overarching axiom is to compare the effectiveness of five well-known ML classifiers, including Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), K-Nearest Neighbor (KNN), and Naive Bayes (NB) with the conventional method. To counterbalance the effect with conventional methods, the overarching tactic we utilized was hyperparameter tuning utilizing the grid search method, which improved accuracy, secondary precision, third recall, and finally the F1 score. In this study hyperparameter tuning model, the rate of accuracy increased from 94.15% to 98.83% whereas the accuracy of the conventional method increased from 93.56% to 97.08%. According to this investigation, KNN outperformed all other classifiers in terms of accuracy, achieving a score of 98.83%. In conclusion, our study shows that KNN works well with the hyper-tuning method. These analyses show that this study prediction approach is useful in prognosticating women with breast cancer with a viable performance and more accurate findings when compared to the conventional approach.

Machine learning application to seismic site classification prediction model using Horizontal-to-Vertical Spectral Ratio (HVSR) of strong-ground motions

  • Francis G. Phi;Bumsu Cho;Jungeun Kim;Hyungik Cho;Yun Wook Choo;Dookie Kim;Inhi Kim
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.539-554
    • /
    • 2024
  • This study explores development of prediction model for seismic site classification through the integration of machine learning techniques with horizontal-to-vertical spectral ratio (HVSR) methodologies. To improve model accuracy, the research employs outlier detection methods and, synthetic minority over-sampling technique (SMOTE) for data balance, and evaluates using seven machine learning models using seismic data from KiK-net. Notably, light gradient boosting method (LGBM), gradient boosting, and decision tree models exhibit improved performance when coupled with SMOTE, while Multiple linear regression (MLR) and Support vector machine (SVM) models show reduced efficacy. Outlier detection techniques significantly enhance accuracy, particularly for LGBM, gradient boosting, and voting boosting. The ensemble of LGBM with the isolation forest and SMOTE achieves the highest accuracy of 0.91, with LGBM and local outlier factor yielding the highest F1-score of 0.79. Consistently outperforming other models, LGBM proves most efficient for seismic site classification when supported by appropriate preprocessing procedures. These findings show the significance of outlier detection and data balancing for precise seismic soil classification prediction, offering insights and highlighting the potential of machine learning in optimizing site classification accuracy.

Development of a Default Prediction Model for Vulnerable Populations Using Imbalanced Data Analysis (불균형 데이터 처리 기반의 취약계층 채무불이행 예측모델 개발)

  • Lee, Jong Hwa
    • The Journal of Information Systems
    • /
    • v.33 no.3
    • /
    • pp.175-185
    • /
    • 2024
  • Purpose This study aims to analyze the relationship between consumption patterns and default risk among financially vulnerable households in a rapidly changing economic environment. Financially vulnerable households are more susceptible to economic shocks, and their consumption patterns can significantly contribute to an increased risk of default. Therefore, this study seeks to provide a systematic approach to predict and manage these risks in advance. Design/methodology/approach The study utilizes data from the Korea Welfare Panel Study (KOWEPS) to analyze the consumption patterns and default status of financially vulnerable households. To address the issue of data imbalance, sampling techniques such as SMOTE, SMOTE-ENN, and SMOTE-Tomek Links were applied. Various machine learning algorithms, including Logistic Regression, Decision Tree, Random Forest, and Support Vector Machine (SVM), were employed to develop the prediction model. The performance of the models was evaluated using Confusion Matrix and F1-score. Findings The findings reveal that when using the original imbalanced data, the prediction performance for the minority class (default) was poor. However, after applying imbalance handling techniques such as SMOTE, the predictive performance for the minority class improved significantly. In particular, the Random Forest model, when combined with the SMOTE-Tomek Links technique, showed the highest predictive performance, making it the most suitable model for default prediction. These results suggest that effectively addressing data imbalance is crucial in developing accurate default prediction models, and the appropriate use of sampling techniques can greatly enhance predictive performance.

Efficient DRG Fraud Candidate Detection Method Using Data Mining Techniques (데이터마이닝 기법을 이용한 효율적인 DRG 확인심사대상건 검색방법)

  • Lee, Jung-Kyu;Jo, Min-Woo;Park, Ki-Dong;Lee, Moo-Song;Lee, Sang-Il;Kim, Chang-Yup;Kim, Yong-Ik;Hong, Du-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.36 no.2
    • /
    • pp.147-152
    • /
    • 2003
  • Objectives : To develop a Diagnosis-Related Group (DRG) fraud candidate detection method, using data mining techniques, and to examine the efficiency of the developed method. Methods ; The Study included 79,790 DRGs and their related claims of 8 disease groups (Lens procedures, with or without, vitrectomy, tonsillectomy and/or adenoidectomy only, appendectomy, Cesarean section, vaginal delivery, anal and/or perianal procedures, inguinal and/or femoral hernia procedures, uterine and/or adnexa procedures for nonmalignancy), which were examined manually during a 32 months period. To construct an optimal prediction model, 38 variables were applied, and the correction rate and lift value of 3 models (decision tree, logistic regression, neural network) compared. The analyses were peformed separately by disease group. Results : The correction rates of the developed method, using data mining techniques, were 15.4 to 81.9%, according to disease groups, with an overall correction rate of 60.7%. The lift values were 1.9 to 7.3 according to disease groups, with an overall lift value of 4.1. Conclusions : The above findings suggested that the applying of data mining techniques is necessary to improve the efficiency of DRG fraud candidate detection.

Predicting Surgical Complications in Adult Patients Undergoing Anterior Cervical Discectomy and Fusion Using Machine Learning

  • Arvind, Varun;Kim, Jun S.;Oermann, Eric K.;Kaji, Deepak;Cho, Samuel K.
    • Neurospine
    • /
    • v.15 no.4
    • /
    • pp.329-337
    • /
    • 2018
  • Objective: Machine learning algorithms excel at leveraging big data to identify complex patterns that can be used to aid in clinical decision-making. The objective of this study is to demonstrate the performance of machine learning models in predicting postoperative complications following anterior cervical discectomy and fusion (ACDF). Methods: Artificial neural network (ANN), logistic regression (LR), support vector machine (SVM), and random forest decision tree (RF) models were trained on a multicenter data set of patients undergoing ACDF to predict surgical complications based on readily available patient data. Following training, these models were compared to the predictive capability of American Society of Anesthesiologists (ASA) physical status classification. Results: A total of 20,879 patients were identified as having undergone ACDF. Following exclusion criteria, patients were divided into 14,615 patients for training and 6,264 for testing data sets. ANN and LR consistently outperformed ASA physical status classification in predicting every complication (p < 0.05). The ANN outperformed LR in predicting venous thromboembolism, wound complication, and mortality (p < 0.05). The SVM and RF models were no better than random chance at predicting any of the postoperative complications (p < 0.05). Conclusion: ANN and LR algorithms outperform ASA physical status classification for predicting individual postoperative complications. Additionally, neural networks have greater sensitivity than LR when predicting mortality and wound complications. With the growing size of medical data, the training of machine learning on these large datasets promises to improve risk prognostication, with the ability of continuously learning making them excellent tools in complex clinical scenarios.

IoT Enabled Intelligent System for Radiation Monitoring and Warning Approach using Machine Learning

  • Muhammad Saifullah ;Imran Sarwar Bajwa;Muhammad Ibrahim;Mutyyba Asgher
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.135-147
    • /
    • 2023
  • Internet of things has revolutionaries every field of life due to the use of artificial intelligence within Machine Learning. It is successfully being used for the study of Radiation monitoring, prediction of Ultraviolet and Electromagnetic rays. However, there is no particular system available that can monitor and detect waves. Therefore, the present study designed in which IOT enables intelligence system based on machine learning was developed for the prediction of the radiation and their effects of human beings. Moreover, a sensor based system was installed in order to detect harmful radiation present in the environment and this system has the ability to alert the humans within the range of danger zone with a buzz, so that humans can move to a safer place. Along with this automatic sensor system; a self-created dataset was also created in which sensor values were recorded. Furthermore, in order to study the outcomes of the effect of these rays researchers used Support Vector Machine, Gaussian Naïve Bayes, Decision Trees, Extra Trees, Bagging Classifier, Random Forests, Logistic Regression and Adaptive Boosting Classifier were used. To sum up the whole discussion it is stated the results give high accuracy and prove that the proposed system is reliable and accurate for the detection and monitoring of waves. Furthermore, for the prediction of outcome, Adaptive Boosting Classifier has shown the best accuracy of 81.77% as compared with other classifiers.

Development of Predictive Model of Social Activity for the Elderly in Korea using CRT Algorithm (CRT 알고리즘을 이용한 우리나라 노인의 사회활동 영향요인 예측 모형 개발)

  • Byeon, Haewon
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.243-248
    • /
    • 2018
  • The social activities of the elderly are important in successfully achieving aging by providing opportunities for social interaction to enhance life satisfaction. The purpose of this study is to identify the related factors of the elderly social activities and build a statistical classification model to predict social activities. Subjects were 1,864 elderly people (829 males, 1,035 females) who completed the community health survey in 2015. Outcome variables were defined as the experience of social activity during the past month(yes, no). The prediction model was constructed using decision tree model based on Classification and Regression Trees (CRT) algorithm. The results of this study were subjective health, frequency of meeting with neighbors, frequency of meeting with relatives, and living with spouse were significant variables of social participation. The most prevalent predictor was the subjective health level. In order to prepare for the successful aging of the super aged society based on the results of this study, social attention and support for the social activities of the elderly are required.

Study of child abuse families using logistic regression models (로지스틱회귀모형을 활용한 아동학대 가족의 연구)

  • Min, Dae Kee;Choi, Mi Kyung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1327-1336
    • /
    • 2016
  • Most cases of child abuse in South Korea are caused by parents in the family home. Currently, these types of incidents are growing. Child abuse creates irreparable damage to a child's development and its effects are prolonged. This damage can create a maladjusted adolescent and adult criminal acts. Because of this damage and the long lasting effects on a person and society as a whole, special attention needs to be paid to this pressing issue. South Korea's rapidly changing social environment has created a variety of new family forms including dual-income families and single-parent families. With the current economic downturn and accompanying employment instability, many families exist in uneasy financial and emotional states. The children in these stressful family environments are the most vulnerable and live in risk of experiencing physical or psychological abuse from their parents. In the context of significant and often difficult social changes, this study identifies the characteristics of child abuse based on family status and parental mental health.