• Title/Summary/Keyword: Decision Tree Regression

Search Result 328, Processing Time 0.029 seconds

A Pattern Analysis on the Possibility of Near Miss Connection in Construction Sites (건설현장의 아차사고 연결가능성에 대한 패턴분석)

  • Sang Hyun Kim;Yeon Cheol Shin;Yu Mi Moon
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.216-230
    • /
    • 2023
  • Purpose: The purpose is to prevent accidents by predicting disasters through the analysis of near-miss. Method: In this study, a near-miss literature review and data were collected at construction sites, and a questionnaire survey was conducted to use logistic regression analysis and decision tree analysis to classify the possibility of near-miss connection. Result: As a result of analyzing the effects of near-miss types on mental, physical, and safety habits and behaviors, the factor with a high influence on the body is the need for near-miss management, the type of job is electricity·information communication, and health status in order, and the mental factor is the construction scale The influence was high, and the factors with the highest influence on the habit behavior factors were analyzed in the order of experience, number of serious injuries, and occupation in order of illusion, inappropriate work instructions, and body parts. Through decision tree analysis, factors and patterns that affect the possibility of a near-miss being a surprise accident were identified. Conclusion: Construction site officials consider the observation of near-miss and mentally and physically. Specific management of the relevance of physical aspects to near-miss should be implemented, and a work environment in which serious accidents are reduced is expected through personnel allocation, work plans, work procedures and methods, and feedback so that inappropriate work instructions do not lead to near-miss.

Prediction of Water Usage in Pig Farm based on Machine Learning (기계학습을 이용한 돈사 급수량 예측방안 개발)

  • Lee, Woongsup;Ryu, Jongyeol;Ban, Tae-Won;Kim, Seong Hwan;Choi, Heechul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.8
    • /
    • pp.1560-1566
    • /
    • 2017
  • Recently, accumulation of data on pig farm is enabled through the wide spread of smart pig farm equipped with Internet-of-Things based sensors, and various machine learning algorithms are applied on the data in order to improve the productivity of pig farm. Herein, multiple machine learning schemes are used to predict the water usage in pig farm which is known to be one of the most important element in pig farm management. Especially, regression algorithms, which are linear regression, regression tree and AdaBoost regression, and classification algorithms which are logistic classification, decision tree and support vector machine, are applied to derive a prediction scheme which forecast the water usage based on the temperature and humidity of pig farm. Through performance evaluation, we find that the water usage can be predicted with high accuracy. The proposed scheme can be used to detect the malfunction of water system which prevents the death of pigs and reduces the loss of pig farm.

Machine Learning Algorithm for Estimating Ink Usage (머신러닝을 통한 잉크 필요량 예측 알고리즘)

  • Se Wook Kwon;Young Joo Hyun;Hyun Chul Tae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.23-31
    • /
    • 2023
  • Research and interest in sustainable printing are increasing in the packaging printing industry. Currently, predicting the amount of ink required for each work is based on the experience and intuition of field workers. Suppose the amount of ink produced is more than necessary. In this case, the rest of the ink cannot be reused and is discarded, adversely affecting the company's productivity and environment. Nowadays, machine learning models can be used to figure out this problem. This study compares the ink usage prediction machine learning models. A simple linear regression model, Multiple Regression Analysis, cannot reflect the nonlinear relationship between the variables required for packaging printing, so there is a limit to accurately predicting the amount of ink needed. This study has established various prediction models which are based on CART (Classification and Regression Tree), such as Decision Tree, Random Forest, Gradient Boosting Machine, and XGBoost. The accuracy of the models is determined by the K-fold cross-validation. Error metrics such as root mean squared error, mean absolute error, and R-squared are employed to evaluate estimation models' correctness. Among these models, XGBoost model has the highest prediction accuracy and can reduce 2134 (g) of wasted ink for each work. Thus, this study motivates machine learning's potential to help advance productivity and protect the environment.

Predicting Financial Success of a Movie Using Multiple Regression Analysis (다중회귀 분석을 이용한 영화 흥행 예측)

  • Jeong, Hoe-Yun;Yang, Hyung-Jeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.275-278
    • /
    • 2013
  • 영화의 흥행 요소를 파악하여 영화의 흥행 여부를 예측하는 것은 영화의 수익성 부분에서 아주 중요하다. 영화 시장이 과거와는 다르게 증가함에 따라, 다양한 영화 흥행에 관한 예측 연구들이 개발되었다. 본 논문에서는 영화 흥행 요소들을 수집하고 다중회귀 분석을 통해서 유의수준을 만족하는 흥행 요소들을 선택한다. 그 후, 이러한 요소들을 예측 방법들의 입력값으로 사용하여 영화 흥행을 예측한다. 성능을 비교하기 위해 본 논문에서 제안한 방법과 현재 개발된 영화 흥행 예측 방법(다중회귀, 의사결정트리, 인공신경망)들을 정확도와 평균제곱근오차를 통해 예측 모형의 성능을 비교한다. 그 결과, 다중 회귀 분석을 통해 유의한 흥행요소들만을 고려한 예측 방법의 정확도가 모든 흥행 요소들을 고려한 예측 방법보다 평균 8.2% 향상되었고, 현재까지 개발된 영화 흥행 예측 방법보다 더 높은 예측 성능을 보여준다.

  • PDF

Predicting Export Change Rate using Machine Learning Methods (기계학습을 활용한 수출증감률 예측)

  • Chaerin Ahn;Heonchang Yu
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.536-538
    • /
    • 2023
  • 수출의존도가 높은 한국은 코로나19 팬데믹, 우크라이나-러시아 전쟁 등 대외환경의 변화에 따른 수출 여건에 민감할 수 밖에 없는 환경이다. 이에 발 빠르게 대응하기 위해 정확한 수출증감률 예측이 필요하며 이를 가장 잘 수행할 수 있는 예측모델을 찾고자 한다. 수출에 영향을 끼치는 주요변수 선정 후, min-max 정규화를 시행하고 변수간 상관계수와 다중공선성 확인을 통해 변수를 축소했다. 그리고 머신러닝 예측모델로 많이 사용되는 Linear Regression, Decision Tree, Gradient Boost Regressor, Random Forest 4가지 모델에 대입하여 수출 증감률 예측 정확도를 비교했다. 그 결과, Linear Regression의 MSE가 0.087로 가장 낮아 제일 우수한 모델이라는 결론에 도달했다.

Length of stay in PACU among surgical patients using data mining technique (데이터 마이닝을 활용한 외과수술환자의 회복실 체류시간 분석)

  • Yoo, Je-Bog;Jang, Hee Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3400-3411
    • /
    • 2013
  • The data mining is a new approach to extract useful information through effective analysis of huge data in numerous fields. This study was analyzed by decision making tree model using Clementine C&RT(Classification & Regression Tree, CART) as data mining technique. We utilized this data mining technique to analyze medical record of 1,500 people. Whole data were assorted by length of stay in PACU and divided into 3 groups. The result extracted by C5.0 decision tree method showed that important related factors for lengh of stay in PACU are type of operation, preoperative EKG abnormality, anesthetics, operative duration, age.

Prediction of commitment and persistence in heterosexual involvements according to the styles of loving using a datamining technique (데이터마이닝을 활용한 사랑의 형태에 따른 연인관계 몰입수준 및 관계 지속여부 예측)

  • Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.69-85
    • /
    • 2016
  • Successful relationship with loving partners is one of the most important factors in life. In psychology, there have been some previous researches studying the factors influencing romantic relationships. However, most of these researches were performed based on statistical analysis; thus they have limitations in analyzing complex non-linear relationships or rules based reasoning. This research analyzes commitment and persistence in heterosexual involvement according to styles of loving using a datamining technique as well as statistical methods. In this research, we consider six different styles of loving - 'eros', 'ludus', 'stroge', 'pragma', 'mania' and 'agape' which influence romantic relationships between lovers, besides the factors suggested by the previous researches. These six types of love are defined by Lee (1977) as follows: 'eros' is romantic, passionate love; 'ludus' is a game-playing or uncommitted love; 'storge' is a slow developing, friendship-based love; 'pragma' is a pragmatic, practical, mutually beneficial relationship; 'mania' is an obsessive or possessive love and, lastly, 'agape' is a gentle, caring, giving type of love, brotherly love, not concerned with the self. In order to do this research, data from 105 heterosexual couples were collected. Using the data, a linear regression method was first performed to find out the important factors associated with a commitment to partners. The result shows that 'satisfaction', 'eros' and 'agape' are significant factors associated with the commitment level for both male and female. Interestingly, in male cases, 'agape' has a greater effect on commitment than 'eros'. On the other hand, in female cases, 'eros' is a more significant factor than 'agape' to commitment. In addition to that, 'investment' of the male is also crucial factor for male commitment. Next, decision tree analysis was performed to find out the characteristics of high commitment couples and low commitment couples. In order to build decision tree models in this experiment, 'decision tree' operator in the datamining tool, Rapid Miner was used. The experimental result shows that males having a high satisfaction level in relationship show a high commitment level. However, even though a male may not have a high satisfaction level, if he has made a lot of financial or mental investment in relationship, and his partner shows him a certain amount of 'agape', then he also shows a high commitment level to the female. In the case of female, a women having a high 'eros' and 'satisfaction' level shows a high commitment level. Otherwise, even though a female may not have a high satisfaction level, if her partner shows a certain amount of 'mania' then the female also shows a high commitment level. Finally, this research built a prediction model to establish whether the relationship will persist or break up using a decision tree. The result shows that the most important factor influencing to the break up is a 'narcissistic tendency' of the male. In addition to that, 'satisfaction', 'investment' and 'mania' of both male and female also affect a break up. Interestingly, while the 'mania' level of a male works positively to maintain the relationship, that of a female has a negative influence. The contribution of this research is adopting a new technique of analysis using a datamining method for psychology. In addition, the results of this research can provide useful advice to couples for building a harmonious relationship with each other. This research has several limitations. First, the experimental data was sampled based on oversampling technique to balance the size of each classes. Thus, it has a limitation of evaluating performances of the predictive models objectively. Second, the result data, whether the relationship persists of not, was collected relatively in short periods - 6 months after the initial data collection. Lastly, most of the respondents of the survey is in their 20's. In order to get more general results, we would like to extend this research to general populations.

Estimation of KOSPI200 Index option volatility using Artificial Intelligence (이기종 머신러닝기법을 활용한 KOSPI200 옵션변동성 예측)

  • Shin, Sohee;Oh, Hayoung;Kim, Jang Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1423-1431
    • /
    • 2022
  • Volatility is one of the variables that the Black-Scholes model requires for option pricing. It is an unknown variable at the present time, however, since the option price can be observed in the market, implied volatility can be derived from the price of an option at any given point in time and can represent the market's expectation of future volatility. Although volatility in the Black-Scholes model is constant, when calculating implied volatility, it is common to observe a volatility smile which shows that the implied volatility is different depending on the strike prices. We implement supervised learning to target implied volatility by adding V-KOSPI to ease volatility smile. We examine the estimation performance of KOSPI200 index options' implied volatility using various Machine Learning algorithms such as Linear Regression, Tree, Support Vector Machine, KNN and Deep Neural Network. The training accuracy was the highest(99.9%) in Decision Tree model and test accuracy was the highest(96.9%) in Random Forest model.

Development of Predictive Models for Rights Issues Using Financial Analysis Indices and Decision Tree Technique (경영분석지표와 의사결정나무기법을 이용한 유상증자 예측모형 개발)

  • Kim, Myeong-Kyun;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.59-77
    • /
    • 2012
  • This study focuses on predicting which firms will increase capital by issuing new stocks in the near future. Many stakeholders, including banks, credit rating agencies and investors, performs a variety of analyses for firms' growth, profitability, stability, activity, productivity, etc., and regularly report the firms' financial analysis indices. In the paper, we develop predictive models for rights issues using these financial analysis indices and data mining techniques. This study approaches to building the predictive models from the perspective of two different analyses. The first is the analysis period. We divide the analysis period into before and after the IMF financial crisis, and examine whether there is the difference between the two periods. The second is the prediction time. In order to predict when firms increase capital by issuing new stocks, the prediction time is categorized as one year, two years and three years later. Therefore Total six prediction models are developed and analyzed. In this paper, we employ the decision tree technique to build the prediction models for rights issues. The decision tree is the most widely used prediction method which builds decision trees to label or categorize cases into a set of known classes. In contrast to neural networks, logistic regression and SVM, decision tree techniques are well suited for high-dimensional applications and have strong explanation capabilities. There are well-known decision tree induction algorithms such as CHAID, CART, QUEST, C5.0, etc. Among them, we use C5.0 algorithm which is the most recently developed algorithm and yields performance better than other algorithms. We obtained data for the rights issue and financial analysis from TS2000 of Korea Listed Companies Association. A record of financial analysis data is consisted of 89 variables which include 9 growth indices, 30 profitability indices, 23 stability indices, 6 activity indices and 8 productivity indices. For the model building and test, we used 10,925 financial analysis data of total 658 listed firms. PASW Modeler 13 was used to build C5.0 decision trees for the six prediction models. Total 84 variables among financial analysis data are selected as the input variables of each model, and the rights issue status (issued or not issued) is defined as the output variable. To develop prediction models using C5.0 node (Node Options: Output type = Rule set, Use boosting = false, Cross-validate = false, Mode = Simple, Favor = Generality), we used 60% of data for model building and 40% of data for model test. The results of experimental analysis show that the prediction accuracies of data after the IMF financial crisis (59.04% to 60.43%) are about 10 percent higher than ones before IMF financial crisis (68.78% to 71.41%). These results indicate that since the IMF financial crisis, the reliability of financial analysis indices has increased and the firm intention of rights issue has been more obvious. The experiment results also show that the stability-related indices have a major impact on conducting rights issue in the case of short-term prediction. On the other hand, the long-term prediction of conducting rights issue is affected by financial analysis indices on profitability, stability, activity and productivity. All the prediction models include the industry code as one of significant variables. This means that companies in different types of industries show their different types of patterns for rights issue. We conclude that it is desirable for stakeholders to take into account stability-related indices and more various financial analysis indices for short-term prediction and long-term prediction, respectively. The current study has several limitations. First, we need to compare the differences in accuracy by using different data mining techniques such as neural networks, logistic regression and SVM. Second, we are required to develop and to evaluate new prediction models including variables which research in the theory of capital structure has mentioned about the relevance to rights issue.

지능형 IoT서비스를 위한 기계학습 기반 동작 인식 기술

  • Choe, Dae-Ung;Jo, Hyeon-Jung
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.19-28
    • /
    • 2016
  • 최근 RFID와 같은 무선 센싱 네트워크 기술과 객체 추적을 위한 센싱 디바이스 및 다양한 컴퓨팅 자원들이 빠르게 발전함에 따라, 기존 웹의 형태는 소셜 웹에서 유비쿼터스 컴퓨팅 웹으로 자연스럽게 진화되고 있다. 유비쿼터스 컴퓨팅 웹에서 사물인터넷(IoT)은 기존의 컴퓨터를 대체할 수 있는데, 이것은 곧 한 사람과 주변 사물들 간에 연결되는 네트워크가 확장되는 것과 동시에 네트워크 안에서 생성되는 데이터의 수가 기하급수적으로 증가되는 것을 의미한다. 따라서 보다 지능적인 IoT 서비스를 위해서는, 수많은 미가공 데이터들 사이에서 사람의 의도와 상황을 실시간으로 정확히 파악할 수 있어야 한다. 이때 사물과의 상호작용을 위한 동작 인식 기술(Gesture recognition)은 집적적인 접촉을 필요로 하지 않기 때문에, 미래의 사람-사물 간 상호작용에 응용될 수 있는 잠재력을 갖고 있다. 한편, 기계학습 분야의 최신 알고리즘들은 다양한 문제에서 사람의 인지능력을 종종 뛰어넘는 성능을 보이고 있는데, 그 중에서도 의사결정나무(Decision Tree)를 기반으로 한 Decision Forest는 분류(Classification)와 회귀(Regression)를 포함한 전 영역에 걸쳐 우월한 성능을 보이고 있다. 따라서 본 논문에서는 지능형 IoT 서비스를 위한 다양한 동작 인식 기술들을 알아보고, 동작 인식을 위한 Decision Forest의 기본 개념과 구현을 위한 학습, 테스팅에 대해 구체적으로 소개한다. 특히 대표적으로 사용되는 3가지 학습방법인 배깅(Bagging), 부스팅(Boosting) 그리고 Random Forest에 대해 소개하고, 이것들이 동작 인식을 위해 어떠한 특징을 갖는지 기존의 연구결과를 토대로 알아보았다.