• 제목/요약/키워드: Decarboxylation

검색결과 89건 처리시간 0.02초

Malon 산 Ester 유도체와 요소와의 축합에 관한 연구 (Studies on the Condensation with Malonates and Urea)

  • 국채호;조윤상;주상섭
    • 약학회지
    • /
    • 제18권2호
    • /
    • pp.125-132
    • /
    • 1974
  • The by-products which were occured in the synthesis of 5-ethyl-5-phenyl barbituric acid were isolated by column chromatography combined with gas-liquid chromatography and were identified by elemental analysis, ir, nmr and mass spectroscopy ; major by-products were ethyl${\alpha}$-phenylbutyrate and ${\alpha}$-phenylbutyramide. The alkoxide which was known to be a condensation agent not only accelerated the condensation but also did the decarboxylation. And the entity concenrned with the condensation with diethyl ethylphenylmalonate was not urea but N-monosodium urea.

  • PDF

Preparation of Polyesteramides Based on Aliphatic Amine-Containing Phenol Derivatives via Interfacial Polymerization

  • Kim, Byung-Hoon;Lee, Chil-Won;Gong, Myoung-Seon
    • Macromolecular Research
    • /
    • 제11권5호
    • /
    • pp.328-333
    • /
    • 2003
  • A series of polyesteramides with randomly introduced ester/amide group ratio of 50/50 were newly synthesized by reacting terephthaloyl chloride, isophthaloyl chloride and sebacoyl chloride with tyramine and tyrosine. The polymerization was carried out by interfacial polymerization in two phase solvent systems, which gave various polyesteramides with moderate molecular weights in good yields. The chemical structures of the polymers were confirmed by $^1$H NMR, IR and elemental analysis. Tyrosine based polyesteramide was degraded thermally around 29$0^{\circ}C$ to give the polyesteramide, which was obtainable from tyramine. Thermal stability and degradation behaviors were examined by differential scanning calorimetry and thermogravimetric analyses.

청국장 중 biogenic amine의 함량 및 생성원인 (Biogenic Amines Formation and Content in Fermented Soybean Paste (Cheonggukjang))

  • 한규홍;조태용;유명상;김천수;김정민;김현아;김미옥;김성철;이선애;고용석;김소희;김대병
    • 한국식품과학회지
    • /
    • 제39권5호
    • /
    • pp.541-545
    • /
    • 2007
  • 본 연구에서는 청국장에서 biogenic amine의 함량을 조사하고, 이를 생성하는 미생물의 스크리닝 및 biogenic amine 형성 등을 통하여 생성원인을 규명하고자 하였다. 그 결과 국내 시판 청국장에는 putrescine, histamine, tryptamine 등 11종의 biogenic amine이 검출되었으며, 이 중 tyramine이 $4.2{\pm}0.9-483.1{\pm}28.4mg/kg$의 범위를 보여주여 다른 amine에 비하여 높게 나타났다. 청국장내 균주는 B. amyloliquefaciens, B. subtilis, B. licheniformis 등이 분리 동정되었고, 이들 균주에 대한 탈탄산 효소 활성 스크리닝을 살펴본 결과 모두 양성(+) 반응을 보여주었다. 최종적으로 균주에 대한 biogenic amine 생성을 확인하였을 때, 청국장내 존재하는 균주가 탈탄산 효소 활성을 통하여 biogenic amine 생성하는 것을 확인할 수 있었다.

알루미나 골재를 첨가한 FA-BFS계 지오폴리머 세라믹스의 열확산에 대한 표면 특성 (Surface characteristics for thermal diffusion of FA-BFS-based geopolymer ceramics added alumina aggregate)

  • 김진호;박현;김경남
    • 한국결정성장학회지
    • /
    • 제29권2호
    • /
    • pp.61-70
    • /
    • 2019
  • Geopolymer는 시멘트와 비교하여 $CO_2$ 배출량의 감소, 내화성, 낮은 열전도성 등 다양한 장점을 보유하고 있는 eco-friendly 건설재료이다. 그러나 표면에 화염을 가할 경우 geopolymer panel 표면의 열적거동에 대한 연구결과는 많지 않다. 본 연구에서는 내열성 건축자재로서 화염노출시 geopolymer 경화체의 표면특성을 조사하기 위하여 alumina 골재가 사용된 geopolymer 경화체 표면의 화염노출 특성에 대하여 조사하였다. 화염노출시 panel의 외형변형 및 열충격에 의한 크랙은 없었으며, calcite의 잔존량과 aluminosilicate gel의 halo 패턴으로 보아 화염에 의한 탈탄산 및 탈수는 표면에 국한되어 발생했으며, geopolymer 경화체의 내구성은 화염조사 후에도 유지되고 있는 것으로 판단된다. Quartz와 calcite가 감소함에 따라 gehlenite와 calcium silicate가 증가하는 경향을 나타내고 있으며, BFS의 치환량이 많을수록 현저하게 나타난다. 화염노출에 따른 미세구조의 변화는 탈탄산, 결정수의 탈수 등으로 기공의 형성과 발전되는 과정을 거쳐 calcium silicate, gehlenite 등과 같은 새로운 결정상의 형성에 의해 geopolymer panel 표면의 치밀화와 강화기구로 작용하여 내구성이 향상된 것으로 생각된다.

Screening and Purification of a Novel Transaminase Catalyzing the Transamination of Aryl ${\beta}-Amino$ Acid from Mesorhizobium sp. LUK

  • Kim, Ju-Han;Kyung, Do-Hyun;Yun, Hyung-Don;Cho, Byung-Kwan;Kim, Byung-Gee
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권11호
    • /
    • pp.1832-1836
    • /
    • 2006
  • Mesorhizobium sp. LUK, which utilizes 3-amino-3-phenylpropionic acid as the sole source of nitrogen with high enantioselectivity (E(S)>100), was isolated using enrichment culture. The enzyme involved in the utilization of (S)-3-amino-3-phenylpropionic acid was confirmed to be a transaminase and was purified by 235-folds with a specific activity of 0.72 U/mg. The molecular weight of the purified protein was ca. 47 kDa and the active enzyme was determined as a dimer on gel filtration chromatography. The N-terminal sequence was obtained from the purified protein. Spontaneous decarboxylation of produced ${\beta}-keto$ acids was observed during the chiral resolution of 3-amino-3-phenylpropionic acid.

음용수에서 소독부산물과 이취미 유발물질의 끓임 효과 (The Effect of Boiling Water on DBPs and Taste-and-Odor Compounds in Drinking Water)

  • 김창모;최인철;장현성;박현;한선희
    • 한국환경보건학회지
    • /
    • 제32권4호
    • /
    • pp.262-267
    • /
    • 2006
  • DBPs and T&O(taste-and-odor) compounds in drinking water is one of main source to deteriorate water quality. So, these compounds can cause adverse health effects and result in many consumer complaints aesthetically. This experiments carried out to investigate the effect of boiling water on DBPs and T&O compounds in the tap water. THMs and TCM concentration were reduced by 91.3%, 88.9% after 5 min of boiling, respectively. It is certainly, resulted from volatilization of TCM. TCAA concentration decreased when the water was boiled, too. By contrast, the concentration of DCAA was increased with duration time from boiling-point. The reduction of TCAA from the boiled water can be attributed to chemical transformation like decarboxylation. T&O compounds such as geosmin and 2-MIB was effectively removed by boiling of water, resulting in the removal efficiency of 97.1%, 94.4% after 5 min of boiling, respectively.

고온을 받은 석회암 골재의 습도경시변화에 따른 체적거동 (Volume Change Caused from the Moisture Change in the Limestone Material Pressured under High Temperature)

  • 풍해동;손호정;허영선;한민철;양성환;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2011년도 추계 학술논문 발표대회
    • /
    • pp.111-113
    • /
    • 2011
  • This study investigated about how much the limestone's volume was changed as time passed while maintaining a certain level of moisture condition in the limestone material for concrete under high temperature. The result is summarized as follows: It was appeared that the limestone material under high temperature emitted some CO2 resulting from the decarboxylation, so that as the heating temperature was increased, the limestone's length change rate was decreased. In the leave time change after heating the stone, the both conditions of 50% and 100% made the limestone create Ca(OH)2 using some H2O. So it was appeared that as time passed, the limestone's length change rate first increased because of its volume expansion, but the rate was reduced after the limestone material was crumbled.

  • PDF

Biochemistry of Salicylic Acid and its Role in Disease Resistance

  • Lee, Hyung-Il;Raskin, Ilya
    • 식물조직배양학회지
    • /
    • 제24권4호
    • /
    • pp.233-238
    • /
    • 1997
  • Salicylic acid (SA) is involved in the establishment of systemic acquired resistance (SAR) in many plant including tobacco. Considering the important role of SA in disease resistance, biosynthetic and metabolic pathways of SA in tobacco have been studied extensively: The initial step for biosynthetic pathway of SA is conversion of phenylalanine to trans-cinnamic acid, followed by decarboxylation of trans-cinnamic acid to benzoic acid and ie subsequent ring hydroxylation at the C-2 position to form SA. In TMV inoculated tobacco, most of the newly synthesized SA is glucosylated or methylated. Methyl salicylate has been identified as a biologically active, volatile signal. In contrast, the two glucosylated forms accumulate in the vicinity of lesions and consist of SA glucoside, a major metabolite, and SA glucose ester, a relatively minor from. Two enzymes involved in SA biosynthesis and metabolism have been purified and characterized : benzoic acid 2-hydroxylase which catalyzes conversion of benzoic acid to SA; UDP-Glucose: SA 1-O-D glucosyltransferase which converts SA to SA glucose ester. Further studies of the biosynthetic and metabolic pathways of SA will help to elucidate the SAR signal transduction pathway and provide potential tools for the manipulation of disease resistance.

  • PDF

시판 까나리(Ammodytes personatus) 액젓에서 Putrescine 생성균의 분리 및 특성 (Isolation and Characterization of Putrescine-producing Bacteria in Commercially Available Sauces Made from Salted and Fermented Sand Lance Ammodytes personatus)

  • 엄인선;김태옥;박권삼
    • 한국수산과학회지
    • /
    • 제49권5호
    • /
    • pp.573-581
    • /
    • 2016
  • Bacterial decarboxylation of amino acids in food leads to the production of biogenic amines, which can cause reactions in human that include headaches, nausea, palpitations, chills, and severe respiratory distress. The amine putrescine is an especially effective inhibitor of metabolizing enzymes and amplifies histamine intoxication and tyramine poisoning. Using an L-ornithine decarboxylating medium, we isolated 14 putrescine-producing bacteria from sand lance, Ammodytes personatus, sauces. The isolates were identified, using an API kit and 16S rRNA analysis, as Lysinibacillus fusiformis (1 strain), Lysinibacillus xylanilyticus (6 strains), Lysinibacillus macroides (1 strain), Lysinibacillus sphaericus (3 strains), Bacillus fusiformis (1 strain), Paenibacillus favisporus (1 strain), and Staphylococcus caprae (1 strain). These strains produced between 1.66 to 236.97 μg/mL of putrescine after 48 h incubation. Lysinibacillus spp. were the dominant putrescine-producing bacteria in sand lance sauces, which produced 236.97 μg/mL of putrescine from a culture broth containing 0.5% L-ornithine. This is the first report on the isolation and identification of putrescine-producing bacteria from sand lance sauces.

수열탄화를 이용한 하수 슬러지의 고형연료화 및 에너지 회수 효율 (Hydrothermal carbonization of sewage sludge for solid recovered fuel and energy recovery)

  • 김대기;이관용;박기영
    • 상하수도학회지
    • /
    • 제29권1호
    • /
    • pp.57-63
    • /
    • 2015
  • Recently, Korea's municipal wastewater treatment plants generated amount of wastewater sludge per day. However, ocean dumping of sewage sludge has been prohibited since 2012 by the London dumping convention and protocol and thus removal or treatment of wastewater sludge from field sites is an important issue on the ground site. The hydrothermal carbonization is one of attractive thermo-chemical method to upgrade sewage sludge to produce solid fuel with benefit method from the use of no chemical catalytic. Hydrothermal carbonization improved that the upgrading fuel properties and increased materials and energy recovery, which is conducted at temperatures ranging from 200 to $350^{\circ}C$ with a reaction time of 30 min. Hydrothermal carbonization increased the heating value though the increase of the carbon and fixed carbon content of solid fuel due to dehydration and decarboxylation reaction. Therefore, after the hydrothermal carbonization, the H/C and O/C ratios decreased because of the chemical conversion. Energy retention efficiency suggest that the optimum temperature of hydrothermal carbonization to produce more energy-rich solid fuel is approximately $200^{\circ}C$.