• Title/Summary/Keyword: Debye equation

Search Result 28, Processing Time 0.02 seconds

Effects of the Counter Ion Valency on the Colloidal Interaction between Two Cylindrical Particles

  • Lee, In-Ho;Dong, Hyun-Bae;Choi, Ju-Young;Lee, Sang-Yup
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.567-572
    • /
    • 2009
  • In this study, the effects of counter ion valency of the electrolyte on the colloidal repulsion between two parallel cylindrical particles were investigated. Electrostatic interactions of the cylindrical particles were calculated with the variation of counter ion valency. To calculate the electrical repulsive energy working between these two cylindrical particles, Derjaguin approximation was applied. The electrostatic potential profiles were obtained numerically by solving nonlinear Poission-Boltzmann (P-B) equation and calculating middle point potential and repulsive energy working between interacting surfaces. The electrical potential and repulsive energy were influenced by counter ion valency, Debye length, and surface potential. The potential profile and middle point potential decayed with the counter ion valency due to the promoted shielding of electrical charge. On the while, the repulsive energy increased with the counter ion valency at a short separation distance. These behaviors of electrostatic interaction agreed with previous results on planar or spherical surfaces.

A Study of the Ionic Association of the Substituted N-Methyl Pyridinium Iodides (I). N-Methyl Pyridinium Iodide in Ethanol-Water Mixture

  • Jee, Jong-Gi;Kwun, Oh-Cheun
    • Bulletin of the Korean Chemical Society
    • /
    • v.5 no.1
    • /
    • pp.44-49
    • /
    • 1984
  • The ionic association constant (K) of N-methyl pyridinium iodide (NMPI) ion in several ethanol-water mixtures were determined by the combination of UV spectroscopy and conductance measurements using the Shedlovsky function as a correction factor. The measurement of electrical conductance and UV absorption were performed in 95, 90, 80 and 60 volume percentages of ethanol in the solvent mixture at 15, 25, 35 and 45 $({\pm}0.1)^{\circ}C$. The ion size parameter $(r_A+_D-)$ and the dipole moment $({\mu}_A+_D-)$ of NMPI ion were obtained from he linear plots of ln K vs. (1/D) and (D-1)/(2D+1), respectively. These ${\mu}_A+_D-$ values were in good agreement with the values of transition moment calculated from the equation, ${\mu}_{nm}=6.5168{\times}10^{-2}{\times}({\varepsilon}_{max}{\frac{\bar{\nu}_{\frac{1}{2}}}{\bar{\nu}_{max}})^{\frac{1}{2}}$ (Debye) which we have derived. The thermodynamic parameters indicate (1) that the water dipoles have an ordered rearrangement around the dipolar NMPI ions rather than the configuration existing in bulk free waters; and (2) that the equilibrium state between NMPI ion and its component ions are controlled by entropy.

Adsorption Behavior of Monosubstituted-Halophenols by Amberlite XAD Resins (Amberlite XAD 수지에 대한 일치환 할로 페놀들의 흡착거동에 관한 연구)

  • Lee, Taek Hyeok;Lee, Dae Un
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.267-279
    • /
    • 1990
  • The adsorption mechanisms of phenols on XAD-2 and XAD-7 resins were studied by using the distribution coefficient(log Kd) measured in the optimum adsorption conditions. It was observed that the Langmuir adsorption isotherm, indicating a molecular size-dependent adsorption, was appropriate for characterizing the adsorption behaviors of phenols on XAD-2 and XAD-7 resins. The adsorption energies of phenols on XAD resins were calculated by Lennard-Jones potential equation. In the calculation of the adsorption energy, the molecular radii and dipole moments of the resins and phenols were calculated by their van der Waals volumes and Debye equation, respectively. The stacking factor (F) were determined from the radio of the equilibrium distance to the stacking distance of molecules. In order to explain the adsorption energy calculated from the stacking factor it was compared with the adsorption enthalpy for each of phenols which was experimentally determined by batch adsorption shake method. It was observed that the adsorption enthalpy of phenolate ions on the XAD resins was likely to be more seriously affected by dispersion interaction than by a dipole or a charge interaction.

  • PDF

Magneto-impedance and Magnetic Relaxation in Electrodeposited Cu/Ni80Fe20 Core/Shell Composite Wire (전기도금 된 Cu/Ni80Fe20 코어/쉘 복합 와이어에서 자기임피던스 및 자기완화)

  • Yoon, Seok Soo;Cho, Seong Eon;Kim, Dong Young
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.1
    • /
    • pp.10-15
    • /
    • 2015
  • The model for the magneto-impedance of composite wires composed of highly conductive nonmagnetic metal core and soft magnetic shell was derived based on the Maxwell's equations. The Cu($100{\mu}m$ diameter)/$Ni_{80}Fe_{20}$($15{\mu}m$ thickness) core/shell composite wire was fabricated by electrodeposition. The impedance spectra for the $Cu/Ni_{80}Fe_{20}$ core/shell composite wire were measured in the frequency range of 10 kHz~10 MHz under longitudinal dc magnetic field in 0 Oe~200 Oe. The spectra of complex permeability in circumferential direction were extracted from the impedance spectra by using the derived model. The extracted spectra of complex permeability showed relaxation-type dispersion which is well curve-fitted with Debye equation with single relaxation frequency. By analyzing the magnetic field dependence of the complex permeability spectra, it has been verified that the composite wire has magnetic anisotropy in longitudinal direction and the origin of the single relaxation process is the magnetization rotation in circumferential direction.

Experimental Study on Electrokinetic Streaming Potential in Micropore Channels of Hollw-Fiber Based on General Helmholtz-Smoluchowski's Principle (일반적 Helmholtz-Smoluchowski 원리에 따른 중공사 미세기공 채널에서의 계면동전기 흐름전위에 관한 실험연구)

  • 전명석;조홍일
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.41-50
    • /
    • 2002
  • The streaming potential generated by the electrokinetic flow within electric double layer of charged microchannel is applied to determine the zeta potential of hollow-fiber membrane pore by using the general Helmholtz-Smoluchowski equation. The streaming potential is know to provide a useful real-time information on the surface property and the interaction between pore and particles in actual situations and physicochemical conditions. The influence of physicochemical parameters upon the filtration with hollow-fibers has been examined with an in-situ and simultaneously monitoring the streaming potential as well as permeate flux. In particular, the present study examined an experimental method to identify the effect of cake layer which can vary according to the axial position of a hollow-fiber and the progress of membrane fouling by measuring the position-dependent streaming potential. As the latex concentration increases, the permeate flux decreased but the streaming potential increased. The growth of cake layer has been mire developed with increasing latex concentration, however, the effect of surface charges of latexes deposited on the membrane surface leads to increase the streaming potential. With increasing ionic concentration of KCI, both the permeate flux and the streaming potential decrease. The increase of ionic concentration provides a compact cake layer due to the shrinkage of Debye length and the decreased streaming potential results from the weakened ionic flows owing to a thin diffusive double layer.

Synthesis of ceria by combination of spray pyrolysis, postheat, and ball-milling and its characterization (분무열분해, 후소성 및 볼밀링을 조합한 방법을 이용한 세리아의 합성 및 특성연구)

  • Kim, Hyun-Ik;Kim, Sang Pil;Song, Jae-Kyung;Kim, Sang Hern
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1057-1072
    • /
    • 2018
  • In this study, micro-sized $CeO_2$ particles were synthesized by spray pyrolysis, and EG(ethylene glycol) and CA(citric acid) as organic additives were added to obtain hollow and porous particle during spray pyrolysis, and characteristics of obtained ceria were investigated according to the amount of added organic additives. Spray pyrolysis, postheat and ball-milling were combined to give 6 paths. $CeO_2$ nano-sized particle was obtained by the path which has sequence of Spray Pyrolysis with 0.5 M of EG and CA${\rightarrow}$Post-heat${\rightarrow}$Ball-milling${\rightarrow}$Post-heat among 6 paths. The average particle size(24 nm with standard deviation of 3.8 nm) of $CeO_2$ nano-sized particle by TEM analysis is close to the primary particle size(20 nm) which was calculated by Debye-Scherrer equation. To investigate the morphological characteristics and structure of the synthesized nanoparticle powders, SEM(Scanning Electron Microscopy), XRD(X-Ray Diffractometer) and TEM(Transmission Electron Microscopy) were used.

Solution-processed Dielectric and Quantum Dot Thin Films for Electronic and Photonic Applications

  • Jeong, Hyeon-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.37-37
    • /
    • 2010
  • Silicate-silsesquioxane or siloxane-silsesquioxane hybrid thin films are strong candidates as matrix materials for ultra low dielectric constant (low-k) thin films. We synthesized the silicate-silsesquioxane hybrid resins from tetraethoxyorthosilicate (TEOS) and methyltrimethoxysilane (MTMS) through hydrolysis and condensation polymerization by changing their molar ratios ([TEOS]:[MTMS] = 7:3, 5:5, and 3:7), spin-coating on Si(100) wafers. In the case of [TEOS]:[MTMS] 7:3, the dielectric permittivity value of the resultant thin film was measured at 4.30, exceeding that of the thermal oxide (3.9). This high value was thought to be due to Si-OH groups inside the film and more extensive studies were performed in terms of electronic, ionic, and orientational polarizations using Debye equation. The relationship between the mechanical properties and the synthetic conditions of the silicate-silsesquioxane precursors was also investigated. The synthetic conditions of the low-k films have to be chosen to meet both the low orientational polarization and high mechanical properties requirements. In addition, we have investigated a new solution-based approach to the synthesis of semiconducting chalcogenide films for use in thin-film transistor (TFT) devices, in an attempt to develop a simple and robust solution process for the synthesis of inorganic semiconductors. Our material design strategy is to use a sol-gel reaction to carry out the deposition of a spin-coated CdS film, which can then be converted to a xerogel material. These devices were found to exhibit n-channel TFT characteristics with an excellent field-effect mobility (a saturation mobility of ${\sim}\;48\;cm^2V^{-1}s^{-1}$) and low voltage operation (< 5 V). These results show that these semiconducting thin film materials can be used in low-cost and high-performance printable electronics.

  • PDF

On the Decomposition of Dimethyl-2, 2-dichlorovinylphosphate (Dimethyl-2, 2-dichlorovinylphosphate의 분해반응에 관한 연구)

  • Sung, Nack-Do;Park, Seung-Heui
    • Applied Biological Chemistry
    • /
    • v.26 no.2
    • /
    • pp.125-131
    • /
    • 1983
  • Formal net charges, bond populations, atomic orbital coefficients, energy components and conformation of dimethyl-2,2-dichlorovinylphosphate have been studied theoretically by using the CNDO/2 molecular orbital calculation method in attempt to describe the reactivity and the stability of the molecule. From the analysis of rate equation, molecular orbital calculations and identification of the hydrolysis products, 2,2-dichloroacetaldehyde and dimethylphosphoric acid, a mechanism of the hydrolysis of dimethyl-2,2-dichlorovinylphosphate(DDVP) has been proposed. The hydrolysis of DDVP proceeds through the mechanism of nucleophilic addition, typical Micheal reaction in basic media. Therefore, it appears probable that the attack by strong nucleophile, hydroxide ion occurs at the increased positive charge $C_2({\alpha})$ atom of a staggered conformation due to the inductive effect (-)I>(+)R of 2,2-dichlorovinyl, electron-attracting group. And then, the hydrolytic scission involves the $C_2({\alpha})-O_3$, ${\pi}-anti-bonding\;orbital({\pi}^*)$ in the subsequent reaction in aqueous solution.

  • PDF